2024年2月8日发(作者:)
1、光催化原理是:半导体能带不是连续的,价带(VB)和导带(CB)之间存在一个禁带,当用能量等于或大于禁带宽度的光照射半导体时,其价带上的电子被激发,越过禁带进入导带,同时在价带上产生相应的空穴,即电子-空穴对。TiO2表面上光生电子和空穴的复合是在小于10-9秒的时间内完成的,因此光生电子和空穴会在TiO2体内或表面重新合并,使光能以热能的形式发散。
TiO2 + hv →e- + h+
e- + h+→N +energy
当存在合适的俘获剂或表面缺陷时,电子与空穴在TiO2表面重新复合受到抑制,就会在TiO2表面发生氧化还原反应。价带空穴是很强的氧化剂,不同的半导体在不同的pH值下空穴的电位为+1.0~+3.5V(相对于标准氢电极NHE);而导带电子是良好的还原剂,电位是+0.5~-1.5V。大多数有机物的光催化降解都是直接或间接利用空穴的氧化能力,但是,为了防止电荷积累,必须有还原物质与电子作用。
一般,吸附在TiO2表面的O2可以通过捕获电子,形成超氧离子而阻止电子与空穴的复合
O2 +e- →O2-
超氧离子在溶液中通过一系列的反应形成H2O2:
2•OOH → H2O2 + O2
•OOH + O2•- → O2
+ H2O-
H2O- + H+ → H2O2
由以下反应均可使产生羟基自由基:
H2O2 → 2•OH
H2O2 + O2•- →•OH + OH- + O2
H2O2 + e- →•OH + OH-
光生空穴的能量为7.5eV,有很强的得电子能力,使不吸收光的物质也被氧化。
对于不同的体系,空穴可以直接氧化或间接氧化有机污染物,甚至可能同时直接和间接氧化有机污染物。间接氧化时,光生空穴与TiO2表面吸附的H2O或OH-离子反应生成氧化能力极强的羟基自由基•OH(氧化电位为2.8eV),•OH对作用物几乎无选择性。
H2O+ h+ →•OH + H+
OH- + h+→•OH
2、带隙:导带的最低点和价带的最高点的能量之差。也称能隙。带隙超过3ev的被认为是宽带隙半导体,例如GaN、SiN和ZnO,小于3ev的就是窄带隙。带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低。
锐钛矿TiO2带隙较宽(3.23eV),只能被波长小于387nm的紫外光所激发产生光催化活性。而紫外光的能量仅仅占太阳光的总能量的4%,这样使得太阳光的利用率很低。因此TiO2的应用受到严重的限制和发展。目前,研究者大多数是通过过渡金属元素或非金属元素掺杂,有机染料表面修饰,以及贵金属沉积等方法使TiO2在可见光区(可见光占太阳光的总能量的43%)实现光催化。其中掺杂是一种
有效并且易于实现的方法。由于杂质原子的引入,掺杂可能导致其能带结构发生(1)增加过渡能级(2)缩小能带间隙两种变化。这两变化都能有效减少价带中电子跃迁到导带的能量,从而使它们吸收带红移。金属掺杂起步比较早,研究的比较多,而非金属掺杂研究的不是很多。
发布者:admin,转转请注明出处:http://www.yc00.com/news/1707375891a1498645.html
评论列表(0条)