2023年6月24日发(作者:)
第42卷第10期2014年10月燃料化学学报JournalofFuelChemistryandTechnologyVol.42No.10Oct.20142409(2014)10-1160-07文章编号:0253-Sulfurremovalandreleasebehaviorsofsulfur-containingmodelcompoundsduringpyrolysisunderinertatmospherebyTG-MSconnectedwithPy-GC2GUOHui-qing1,,XIELi-li1,WANGXin-long1,LIUFen-rong1,WANGMei-jun3,HURui-sheng1(1.CollegeofChemistryandChemicalEngineering,InnerMongoliaUniversity,Hohhot010021,China;2.SchoolofPharmaceuticalScience,InnerMongoliaMedicalUniversity,Hohhot010110,China;3.KeyLaboratoryofCoalScienceandTechnology,TaiyuanUniversityofTechnology,Taiyuan030024,China)Abstract:Sulfurcontainingmodelcompounds,tetradecylmercaptan,dibutylsulfide,phenylsulfide,2-methylthiophene,benzothiopheneanddibenzothiophene,wereselectedtoinvestigatetheirsulfurremovalandreleasebehaviorsduringpyrolysisunderinertatmospherebythermo-gravimetricanalyzerwithmassspectrometer(TG-MS)andpyrolysisconnectedwithgaschromatogram(Py-GC).Itwasfoundthattheorderofsulfurremovalwastetradecylmercaptan>dibutylsulfide>2-methylthiophene>benzothiophene>phenylsulfide>dibenzothiophene.Exceptforphenylsulfide,thisruleiscontrarytothedecompositiontemperatureorderofthesulfurfunctionalgroups.SO2evolutionwasdetectedbyMSandGCforallthosemodelcompoundsandCOSevolutionwasalsofoundexceptforphenylsulfideanddibenzothiophene;whileH2Sevolutionwasmeasuredonlyfortetradecylmercaptan,dibutylsulfideand2-methylthiophene.However,SO2contentwasmuchhigherthanH2SandCOSinpyrolysisgasforeachmodelcompound,whichmaybecausedbythatindigenoushydrogenwasmuchlessthanindigenousoxygenunderinertatmosphere,whenmostofsulfurradicalscanconnectwithindigenousoxygenandreleaseintheformofSO2.activedcarbonwasusedascarrier.Thus,Forphenylsulfide,benzothiopheneanddibenzothiophene,astheirindigenoushydrogenwasnotenoughtoreactwithsulfurradicals,noH2Swasdetectedduringpyrolysisunderinertatmosphere,whileSO2wasfoundanditscontentwasveryhighinpyrolysisgas.Keywords:pyrolysis;sulfurrelease;sulfur-containingmodelcompounds;TG-MS;Py-GCCLCnumber:TQ53Documentcode:ASO2andothersulfur-containinggasesreleasefromcoal-combustionandrefineryoperationshavebeenimplicatedasacauseofsomeairpollution(asacidrain)relatedproblems[1].RationalutilizationofcoalresourcesisthemajorrequirementsofthestrategyofChinesesustainabledevelopment[2~4].Thus,theresearchprojectscanbeputforwardtoatthesametime.ThatishowwecaneffectivelycontrolthedischargeofSOxandinvestigatethecleancoalutilizationtechnology.Thesulfurreleaseduringcoalpyrolysisprocessisverycomplicated,soitisdifficulttomakeanexactexplanation.Now,therearedifferentexplainsaboutthesulfurreleasemechanismduringcoalpyrolysisprocess.Someresearchers[5]consideredthatthesulfurcompoundsfirstlybrokeintosulfurfreeradicals,andthensulfurradicalscombinedwithinternalorexternalhydrogentoevolveH2S.Yanetal[6]proposedthatthesulfur-containingcompoundsofcoalfirstlycrackedandreleasedsulfurhydrogenfreeradicals,andthesubsequentreactionandconclusionwereReceiveddate:2014-05-20;Receivedinrevisedform:2014-08-08.similartotheformer.Mullensetal[7]usedTPD-MS/TPO-MStostudythealiphaticsulfur-containingmodelcompoundsbenzylsulfideandbenzyl-dryldisulfide.Itshowedthatthetwocompoundsbegantoreleasegasat215℃underatmospherepressureandstoppedtoreleaseat310℃underhelium.Thesulfur-containinggaswasmainlyH2S,COSandSO2.Basedonthecomplexityofsulfurreleasingmechanismduringcoalpyrolysis,many[8~10]researchersstudiedreleasebehaviorofsulfur-containingmodelcompoundsinsteadofcoal.Somein-depthunderstandingofthesulfurreleasingbehaviorhasbeenattainedduringpyrolysis,butasthestrongstabilityofthiophenestructuremodelcompounds(suchasdibenzenethiophene)withmuchhigherdecompositiontemperaturewaseasilyvolatilizedbeforedecomposition,itisstillhardtocarrythrough11~17]theresearch[5,.Therefore,itisveryimportanttochooseanappropriatecarriertoloadsulfurmodelcompoundsforfurtherstudyingsulfurreleasebehavior.Foundationitem:SupportedbyNaturalScienceFoundationofChina(21466025),theNaturalScienceFoundationofInnerMongolia(2013MS0205)andtheStateKeyLaboratoryBreedingBaseofCoalScienceandTechnologyCo-foundedbyShanxiProvinceandtheMinistryofScienceandTechnology,TaiyuanUniversityofTechnology(2014).471-4992981;E-Correspondingauthor:Tel/Fax:+86-mail:fenrongl@163.com,nmgwmj1985@163.com.本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813)。第10期GUOHui-qingetal:Sulfurremovalandreleasebehaviorsofsulfur-containing......1161Previouslystudiesshowedthatactivatedcarbonhasbetteradsorptionpropertiescomparedwithsilicaandalumina.Theadsorptionabilityofacetonewasbetterthantoluene[18].Inthisstudy,severalsulfur-containingmodelcompounds,tetradecylmercaptan,dibutylsulfide,phenylsulfide,2-methylthiophene,benzothiopheneanddibenzothiophene,wereselectedtoinvestigatethesulfurremovalandreleasebehaviorsbyTG-MSandPy-GCduringpyrolysis.Thus,moreinformationaboutsulfurreleasebehaviorofmodelcompoundscanbeattained,whichwasveryhelpfulforstudyingthesulfurreleasemechanismofcoalduringpyrolysis.11.1ExperimentalSamplesEachmodelcompoundincludingtetradecylmercaptan,dibutylsulfide,phenylsulfide,2-methylthiophene,benzothiopheneanddibenzothiophene,wasloadedontoactivatedcarboncarrier.Briefly,underair-freeconditions,thesulfur-containingmodelcompound(themasswasdeterminedbyitssulfurcontentandthedesiredsulfurcontent)wasplacedintoabeakerwith5mLacetonesolutionandthoroughlyresolved.Thenthesolutionwaspouredintoanotherbeakerwhereabout1gactivatedcarbonhadbeenadded.Thesampleswerestirredbyultrasonicationfor20min,driedatroomtemperatureforabout48h,andthencollectedforfurtherexperimentation.Theautomaticsulfurdeterminationanalyzer(XK-5000)wasusedtomeasuresulfurcontentofeachmodelcompoundbeforeandafterpyrolysisinthisstudy,andthesulfurcontentofTable1ModelcompoundSulfur-contentbeforpyrolysisw/%Sulfur-contentafterpyrolysisw/%Weightlossw/%Desulfurizationratio/%Tetradecylmarcaptan3.100.7134.6377.062-methylthiophene2.321.5714.5132.10modelcompoundsareshowninTable1.1.2Py-GCequipmentPyrolysiswascarriedoutinaquartztubefixedbedreactor(i.d.5mm,length60cm).About0.5gcoalwaspyrolyzedunderN2atthetemperaturerangefromroomtemperatureto800℃withgasflowrateof75mL/minatheatingrateof10℃/min.H2S,COSandSO2wereanalyzedbygaschromatography(GC)withFPD.Thecolumnanddetectortemperatureswere90and250℃,respectively.Afterpyrolysis,thesamplewascoldedandcolletedforfurthermeasuringitsweightandsulfurcontent.Thus,theweightloss(%)w=mA/mR,wheremAistheweightofsampleafterpyrolysis(g)andmRistheweightofrawsampel(g).Thedesulfurizationratiocanbeattainedacordingtotheliterature[19].AndthedesulfurizationratioandweightlossareshowninTable1.1.3TG-MSequipmentTG-MSequipmentcanbeseenelsewhere[20~23].About20mgmodelcompoundwasplacedintothequartzreactorandsubsequentlyheatedat10℃/minfromroomtemperatureto800℃inacontinuousflowofpurenitrogenataflowrateof75mL/min.Themassspectrometer(OmnistarTM)wasusedtomeasureH2S,COS,SO2,etc.online.2Resultsanddiscussion2.1SulfurremovalofmodelcompoundsduringpyrolysisTable1istheweightlossofmodelcompoundsandtheirsulfurremovalduringpyrolysisunderinertatmosphereattainedbypyrolysis,respectively.DesulfurizationefficiencyofmodelcompoundsduringpyrolysisBenzothiophene2.992.1717.9527.67Dibutylsulfide2.830.7224.1474.72DibenzothiophenePhenylsulfide3.012.3819.1221.073.032.2524.7125.87AsTable1shows,theweightlossoftetradecylmethylmarcaptan,dibutylsulfide,phenylsulfide,2-thiophene,benzothiopheneanddibenzothiopheneis34.63%,24.14%,24.71%,14.51%,17.95%and19.12%,whilethesulfurremovalis77.06%,74.72%,25.87%,32.10%,27.67%and21.07%,respectively.ComparedwithTable1andFigure1,theresultsofweightlossattainedbyPy-GC(showninTable1)isalmostsametotheonesbyTG(showninFigure1),suchasweigtlossoftetradecylmercaptanis34.63%inTable1andabout35%inFigure1;thatof2-methylthiopheneis14.51%inTable1,whileabout15%inFigure1,andsoon.Itcanbeclearlyseenthattheorderofsulfurremovalistetradecylmercaptan>dibutylsulfide>2-methylthiophene>benzothiophene>phenylsulfide>dibenzothiophene.Exceptforphenylsulfide,thisruleiscontrarytothedecompositiontemperatureorderofthesulfurfunctionalgroups,whichisalkylthiols<arylthiols<disulfides<dialkylsulfides<alkylarylsulfides≈alkylarylsulfoxides≈alkylarylsulfones<pyrite<diarylsulfides≈diarylsulfoxides<diarylsulfones<1162燃料化学学报第42卷simplethiophenicstructures<troilite<inorganicsulfatesandcomplexthiophenicstructure[22~24].Thiscanfurthervalidatethatthelowerthedecompositiontemperatureofsulfurfunctionalgroupis,thehigheritssulfurremovalis.Butthereisnoenoughinnerhydrogeninactivatedcarbon,phenylsulfideanddibenzothiophene.SulfurradicalsfromthosecompoundsduringpyrolysiscouldnotconnectwithinnerhydrogentoevolveH2S.Therefore,thedesulfurizationefficiencyislowerthansimplemethylthiopheneandthiophenicstructures,suchas2-benzothiophene.attainedbyMSandtheirDTGplotsbyTG.Foractivatedcarbon,noH2Sreleaseisdetectedatthewholetemperaturerange.Thus,H2Sreleaseofmodelcompoundsisunrelatedtoactivatedcarboncarrier.Figure2H2SevolutionlinesandDTGplotsofdifferentmodelcompoundsFigure1TGplotsofdifferentsulfur-containingmodelcompoundsInaddition,benzothiopheneanddibenzothiopheneareeasilyvolatilizedbeforedecompositionduringpyrolysis.Thus,itssulfurremovalmaybecausedbyitsvolatilization,notbyitsdecomposition.Thiscanbefurthertestifiedbyitssulfur-containinggasesevolutionduringpyrolysis.2.2Releaseofsurfur-containinggasesofmodelcompoundsduringpyrolysisInthisstudy,Py-GCandTG-MSwereusedtoinvestigatethereleaseofsulfur-containinggasesduringpyrolysis,suchasH2S,COSandSO2,etc.2.2.1H2SreleaseofmodelcompoundsduringpyrolysisFigure2isH2SevolutionofactivatedcarbonanddifferentmodelcompoundsloadedonactivatedcarbonFortetradecylmercaptan,therearetwoobviousH2Sevolutionpeaksfrom250to450℃inFigure2andH2SisalsoobservedbyGCwithFPDinthistemperatureregion(Figure3).Thefirstpeakshouldbeattributedtodecompositionoftetradecylmarcaptanitself,andthesecondonemayberelatedtodecompositionofitstransformationcompounds,e.g.alkylsulfide.AsshowninFigure2,theweightlossrateisveryhighbefore300℃andthendecreases.AndtheDTGpeakiscoincidedtothefirstpeakofH2S,whichindicatestheweightlossiscausedbythedecompositionoftetradecylmarcaptan.ButbeforeH2Sevolution,theweightlosshasalreadystarted,whichmaybemainlycausedbylosingsomealkylsorvolatilizationoftetradecylmarcaptan.AsnosaturatedCH-chainscompoundwasdetectedbyMSbefore400℃asshowninFigure4,theweightlossbeforeH2Sevolutionisexactlyresultedfromitsvolatilizationratherthanlosingsomealkyls,whileafterH2Sevolution,itisjustcausedbydecompositionoftetradecylmarcaptan.Assomealkylradicals,hydrogenradicalsandsulfur-containingradicalscouldbeproducedduringpyrolysis,theycanconnectwitheachothertoevolveH2S,somesmallalkycompoundsandalkylsulfide.Comparisontothetwo第10期GUOHui-qingetal:Sulfurremovalandreleasebehaviorsofsulfur-containing......1163peaks,thefirstoneissmallerthanthesecond.Thus,themostofsulfurcomesfromtransformationcompoundoftetradecylmarcaptanratherthanitself.inFigure3).However,themaximumpeaktemperatureisalmostclosetothesecondoneoftetradecylmarcaptan,whichfurthertestifiesthattetradecylmarcaptancantransformtoalkylsulfide.ItsH2Sevolutionbeginsnearly275℃,whiletheweightlossstartsbefore100℃.ThismustbecausedbythedecompositionofdibutylsulfideassomesaturatedcarbonhydrogencompoundswerealsocheckedattheweightlossregionasshowninFigure5,likemethane,ethane,butane,andsoon.Thus,thesulfurremovalisresultedfromitsdecompositionratherthanitsvolatilization.Figure3H2SreleasingpeaksofdifferentmodelcompoundsbyGCFigure5EvolutionofsaturatedCH-chainscompoundsfordibutylsulfideFigure4EvolutionofsaturatedCH-chainscompoundsfortetradecylmercaptanFordibutylsulfide(C4H9-S-C4H9),onlyoneH2SevolutionpeakcanbeclearlyseeninFigure2,whichissimilartotheresultsattainedbyGC(shownThereisalsoonepeakfor2-methylthiophene,andnopeakforbenzothiophene,phenylsulfideanddibenzothiophene,respectivelyinFigure2.2-methylthiophenestartstodecomposeabout100℃andthemaximumpeaktemperatureisabout200℃,whichissimilartotheresultsattainedbyGC,butthreeobviouspeaksweredetectedbyGC,whilenopeaksobservedbyMSafter400℃.ThedifferencemaybecausedbythedifferentsensitivityofGCandMSequipmentordifferentsamples’weightduringexperiment.However,theDTGplotisalmostcoincidedtotheH2Sevolutionpeak,indicatingthattheweightlossmaybemainlycausedbyitsdecomposition.Inaddition,methaneandethanearealsofoundatthetemperaturerangeofweightloss1164燃料化学学报第42卷(showninFigure6),whichcanfurthertestifythehypothesis.Figure7COSreleasingpeaksofdifferentmodelcompoundsattainedbyMSFigure6EvolutionofsaturatedCH-chainscompoundsfor2-methylthiopheneHowever,forbenzothiophene,phenylsulfideanddibenzothiophene,noH2SwasalsodetectedbyGC,andthustheirweightlossshouldbecausedbytheirvolatilizationorbyCOSandSO2evolution.2.2.2COSandSO2releaseofmodelcompoundsduringpyrolysisFigures7and8showCOSreleasingpeaksofdifferentmodelcompoundsattainedbyMSandbyGC,respectively.ItisclearlyseenthatthereisalsonoCOSmeasuredbyMSorGCforactivatedcarbon,phenylsulfideanddibenzothiophene.ThetemperaturerangeofCOSevolutionisverysimilartoH2Sevolutionfortetradecylmercaptan,dibutylsulfideand2-methylthiophene.Butforeachoftetradecylmercaptan,dibutylsulfideand2-methylthiophene,COSconcentrationismuchlowerthanH2Sconcentration,e.g.,themaximumCOSconcentrationislowerthan1×10-6,0.-6-63×10and10×10(Figure8),whileH2Sconcentrationcanattainabout50×10-6,10×10-6andhigherthan15×10-6(Figure3),respectively.Forbenzothiophene,COSwasalsodetectedatthetemperaturerangefrom200to600℃byMSand400to500℃byGC,whichisverydifferentfromitsH2Sevolution,asnoH2SwasfoundwhetherbyMSorbyGCduringpyrolysis.Figure8COSreleasingpeaksofdifferentmodelcompoundsattainedbyGCExceptforactivatedcarbon,SO2wasdetectedbyMSandGCforallofthosesulfurcontainingcompoundsandtheresultsareshowninFigures9and10,respectively.第10期GUOHui-qingetal:Sulfurremovalandreleasebehaviorsofsulfur-containing......1165ItcanbeclearlyseenthattheSO2evolutionprofilesarealmostcoincidedwithH2SandCOS,showingthatsulfurcontainingradicals,whichcomefromsulfurcontainingcompoundsduringpyrolysis,canequallyreactwithindigenoushydrogenandoxygen[21].Underinertatmosphere,asactivatedcarbonwasusedascarrier,indigenoushydrogenismuchlessthanindigenousoxygen.Thus,mostofsulfurradicalscanconnectwithindigenousoxygenandreleaseSO2.Forphenylsulfide,benzothiopheneanddibenzothiophene,astheirindigenoushydrogenisnotenoughtoreactwithsulfurradicals,noH2Swasfoundduringpyrolysisunderinertatmosphere,whileSO2wasdetectedanditscontentisveryhighinpyrolysisgas.Forothercompounds,theSO2contentasshowninFigure10isalsomuchhigherthanH2SandCOS.3Figure9SO2releasingpeaksofdifferentmodelcompoundsattainedbyMSConclusionsFigure10SO2releasingpeaksofdifferentmodelcompoundsattainedbyGCInthisstudy,sulfurcontainingmodelcompoundswasusedtoinvestigatetheirsulfurremovalandsulfurreleasebehaviorduringpyrolysisunderinertatmosphere.Thefollowingconclusionscanbeobtained:Theorderofsulfurremovalwastetradecylmercaptan>dibutylsulfide>2-methylthiophene>benzothiophene>phenylsulfide>dibenzothiophene.Exceptforphenylsulfide,thisruleiscontrarytothedecompositiontemperatureorderofthesulfurfunctionalgroups.Itindicatesthatthelowerthedecompositiontemperatureofsulfurfunctionalgroup,thehigheritssulfurremoval.SO2evolutionwasdetectedbyMSandGCforallthosemodelcompounds.COSwasalsofoundexceptforphenylsulfideanddibenzothiophene,whileH2Swasmeasuredonlyfortetradecylmercaptan,dibutylsulfideand2-methylthiophene.Underinertatmosphere,asactivatedcarbonwasusedascarrier,indigenoushydrogenwasmuchlessthanindigenousoxygen.Thus,mostofsulfurradicalscanconnectwithindigenousoxygenandreleaseSO2.Forphenylsulfide,benzothiopheneanddibenzothiophene,astheirindigenoushydrogenwasnotenoughtoreactwithsulfurradicals,noH2Swasdetectedduringpyrolysisunderinertatmosphere,whileSO2wasfoundanditscontentisveryhighinpyrolysisgas.References[1]HUANGC,LINKOUSCA,ADEBIYIO,T-RAISSIETA.Hydrogenproductionviaphotolyticoxidationofaqueoussodiumsulfitesolutions[J].EnvironSciTechnol,2010,44(13):5283-5288.[2]YUJ,YINF,WANGS,CHANGL,GUPTAS.Sulfurremovalpropertyofactivated-char-supportedFe-Mosorbentsforintegratedcleaningofhotcoalgases[J].Fuel,2013,108(6):91-98.[3]YUJ,CHANGL,XIEW,WANGD.CorrelationofH2SandCOSinthehotcoalgasstreamanditsimportanceforhightemperature.KoreanJChemEng,2011,28(4):1054-1057.desulfurization[J][4]XUG,YANGY,LUS,LIL,SONGX.Comprehensiveevaluationofcoal-firedpowerplantsbasedongreyrelationalanalysisandanalytichierarchyprocess[J].EnergyPolicy,2011,39(5):2343-2351.1166燃料化学学报第42卷[5]ATTARA.Chemistry,thermodynamicsandkineticsofreactionsofsulphurincoal-gasreactions:Areview[J].Fuel,1978,57(4):201-212.[6]YANJ,YANGJ,LIUZ.SHradical:Thekeyintermediateinsulfurtransformationduringthermalprocessingofcoal[J].EnvironSciTechnol,2005,39(13):5043-5051.[7]MULLENSS,YPERMANJ,REGGERSG,CARLEERAR,BUCHANANA.C,BRITTPF,RUTKOWSKIP,GRYGLEWICZG.Astudyofthereductivepyrolysisbehaviourofsulphurmodelcompounds[J].JAnalApplPyrolysis,2003,70(2):469-491.[8]MAESII,GRYGLEWICZG,YPERMANJ,FRANCODV,D’HAESJ,D’OLIESLAEGERSM,VANPOUKELC.Effectofsideriteincoalonreductivepyrolyticanalyses[J].Fuel,2000,79(15):1873-1881.[9]MAESII,YPERMANJ,VANDENRULH,FRANCODV,MULLENSJ,VANPOUCKELC,GRYGLEWICZG,WILKP.Studyofcoal-derivedTPR)[J].EnergyFuels,1995,9(6):950-955.pyriteanditsconversionproductsusingatmosphericpressuretemperature-programmedreduction(AP-[10]YIP,YUQ,ZONGH.Thechemicalthermodynamicsanalysisofpyritedesulfurization[J].CoalConvers,1999,22(1):48-52.[11]SUGAWARAK,ENDAY,SUGAWARAT,SHIRAIM.XANESanalysisofsulfurformchangeduringpyrolysisofcoals[J].SynchrotRadiat,2001,8(2):955-957.[12]MIURAK,MAEK,SHIMADAM,MINAMIH.Analysisofformationratesofsulfur-containinggasesduringthepyrolysisofvariouscoals[J].Energyfuels,2001,15(3):629-636.[13]XUL,YANGJ,LIY,LIUZ.Behavioroforganicsulfurmodelcompoundsinpyrolysisundercoal-likeenvironment[J].FuelProcessTechnol,2004,85(8):1013-1024.[14]KARRJRC.Analyticalmethodsforcoalandcoalproducts[J].AcademicPress,1979,19(3):588-624.[15]KATSUYASUS,KEIKOA,TAKUOS.Dynamicbehaviorofsulfurformsinrapidpyrolysisofdensity-separatedcoals[J].Fuel,1995,74(12):1823-1829.[16]SUGAWARAK,TOZUKAY,KAMOSHITAT,TAKUOS,MARKAS.Dynamicbehaviourofsulfurformsinrapidpyrolysisofdensity-separatedcoals[J].Fuel,1994,73(7):1224-1228.[17]LIUF,LIW,CHENH,LIB.Unevendistributionofsulfursandtheirtransformationduringcoalpyrolysis[J].Fuel,2007,86(3):360-366.[18]刘粉荣,[J].化工进展,2012,31(11):2570-2573.郭慧卿,胡瑞生,赫淑颖,胡浩权.含硫模型化合物在不同载体上的担载及其燃烧过程硫的释放行为(LIUFen-rong,GUOHui-qing,HURu-sheng,HEShu-ying,HUHao-quan.Astudyontheloadingbehaviorofsulfur-containgcompoundsonthedifferentcarriersandsulfurreleasebehaviorduringcombustionprocess[J].ChemicalIndustryandEngineeringProgress,2012,31(11):2570-2573.)[19]刘粉荣,李文,李保庆,陈皓侃.氧化性气氛下流化床中煤的热解脱硫及硫的分布[J].燃料化学学报,2006,34(4):404-407.(LIUFen-rong,LIWen,CHENHao-kan,LIBao-qing.Sulfurremovalanditsdistributionduringcoalpyrolysisinfluidizedbedreactorunderoxidativeatmospheres[J].JournalofFuelChemistryandTechnology,2006,34(4):404-407.)[20]LIUF,LIW,CHENH,LIB.Gasanalysisandsulfurremovalfromcoalduringfluidizedbedpyrolysisunderdifferentoxygencontents[C].10.2005ICCS&TOkinawa,2005-[21]刘粉荣,[J].燃料化学学报,2011,39(2):81-84.李文,郭慧卿,李保庆,白宗庆,胡瑞生.XPS法研究煤表面碳官能团的变化及硫迁移行为(LIUFen-rong,LIWen,GUOHui-qing,LIBao-qing,BAIZong-qing,HURui-sheng.XPSstudyonthechangeofcarbon-containinggroupsandsulfurtransformationoncoalsurface[J].JournalofFuelChemistryandTechnology,2011,39(2):81-84.)[22]LIUF,LIB,LIW,BAIZ,YPERMANJ.Py-MSstudyofsulfurbehaviorduringpyrolysisofhigh-sulfurcoalsunderdifferentatmospheres[J].FuelProcessTechnol,2010,91(11):1486-1490.[23]MAJCHROWICZ.B,YPERMAN.J,MULLENSJ,VANPOUCKE.L.Automatedpotentiometricdeterminationofsulfurfunctionalgroupsinfossilfuels[J].AnalChem,1991,63(8):760-763.[24]YPERMANJ,MAESII,VANDELRULH,MULLENSS,VANAELSTJ,FRANCOD,JULESM,LUCIENC,POUCKEV.Sulphurgroupanalysisinsolidmatricesbyatmosphericpressure-temperatureprogrammedreduction[J].AnalChimActa,1999,395(1):143-155.[25]VANAELSTJ,YPERMANJ,FRANCOD,VANPOUCKEL,BUCHANANA,BRITTP.Studyofsilica-immobilizedsulfurmodelcompoundsascalibrantsfortheAP-TPRstudyofoxidizedcoalsamples[J].EnergyFuels,2000,14(5):1002-1008.TG-MS与Py-GC相结合法研究惰性气氛下含硫模型化合物热解过程中硫的脱除及释放行为研究1,211131郭慧卿,谢丽丽,王鑫龙,刘粉荣,王美君,胡瑞生(1.内蒙古大学化学化工学院,内蒙古呼和浩特2.内蒙古医科大学药学院,内蒙古呼和浩特010021;030024)010110;3.太原理工大学煤科学与技术重点实验室,山西太原摘MS)和热解-MS)相结合的方法对模型化合物(十四硫醇、要:采用热重-质谱法(TG-气相色谱法(Py-二丁基硫醚、苯硫醚、二甲基噻吩、苯并噻吩和二苯并噻吩等)在惰性气氛下硫的脱除及释放行为进行研究。惰性气氛下硫的脱除顺序为:十四硫醇>二丁基硫醚>二甲基噻吩>苯并噻吩>苯硫醚>二苯并噻吩,苯硫醚除外,该顺序与含硫官能团的热分解顺序一致。在热解过程中,所有模型化合物在质谱和气相色谱仪上均被检测到SO2;除苯硫醚和二苯并噻吩外,其他模型化合物中均检测到了COS;而只在十四硫醇、二丁基硫醚和二甲基噻吩中检测到了H2S。且热解气中SO2含量要显著高于H2S和COS。这是由于活性炭作载体时,惰性气氛下内部氢的含量显著小于内部氧的含量,所以大多数的含硫自由基易与内部氧结合以SO2的形式苯并噻吩和二苯并噻吩中没有检测到H2S,是由于内部氢的不足,使得含硫自由基不能与内部氢结合,所逸出。对于苯硫醚、以没有检测到H2S逸出。MS;Py-GC关键词:热解;硫释放;含硫模型化合物;TG-中图分类号:TQ53文献标识码:A
发布者:admin,转转请注明出处:http://www.yc00.com/xiaochengxu/1687580273a21852.html
评论列表(0条)