2024年4月15日发(作者:24小时精准天气预报)
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
1
ASurveyonTransferLearning
SinnoJialinPanandQiangYangFellow,IEEE
Abstract—Amajorassumptioninmanymachinelearninganddataminingalgorithmsisthatthetrainingandfuturedatamustbe
r,inmanyreal-worldapplications,thisassumptionmaynothold.
Forexample,wesometimeshaveaclassificationtaskinonedomainofinterest,butweonlyhavesufficienttrainingdatainanother
domainofinterest,wherethelatterdatacases,
knowledgetransfer,ifdonesuccessfully,wouldgreatlyimprovetheperformanceoflearningbyavoidingmuchexpensivedatalabeling
ntyears,transfrveyfocuseson
categorizingandreviewingthecurrentprogressontransferlearningforclassification,survey,
wediscusstherelationshipbetweentransferlearningandotherrelatedmachinelearningtechniquessuchasdomainadaptation,multi-
tasklearningandsampleselectionbias,exploresomepotentialfutureissuesintransferlearning
research.
IndexTerms—TransferLearning,Survey,MachineLearning,DataMining.
✦
1I
NTRODUCTION
Dataminingandmachinelearningtechnologieshavealready
achievedsignificantsuccessinmanyknowledgeengineering
areasincludingclassification,,
[1],[2]).However,manymachinelearningmethodsworkwell
onlyunderacommonassumption:thetrainingandtestdataare
drawnfromthesamefeaturespaceandthesamedistribution.
Whenthedistributionchanges,moststatisticalmodelsneedto
manyrealworldapplications,itisexpensiveorimpossibleto
wouldbenicetoreducetheneedandefforttore-collectthe
cases,knowledgetransferortransfer
learningbetweentaskdomainswouldbedesirable.
Manyexamplesinknowledgeengineeringcanbefound
wheretransferlearningcantrulybebenefimple
isWebdocumentclassification[3],[4],[5],whereourgoal
istoclassifyagivenWebdocumentintoseveralpredefined
ampleintheareaofWeb-document
classification(,[6]),thelabeledexamplesmaybe
theuniversityWebpagesthatareassociatedwithcategory
informationobtainedthroughpreviousmanual-labelingefforts.
ForaclassificationtaskonanewlycreatedWebsitewherethe
datafeaturesordatadistributionsmaybedifferent,theremay
ult,wemaynotbe
abletodirectlyapplytheWeb-pageclassifierslearnedonthe
cases,itwould
behelpfulifwecouldtransfertheclassificationknowledge
intothenewdomain.
Theneedfortransferlearningmayarisewhenthedatacan
case,thelabeleddataobtainedin
onetimeperiodmaynotfollowthesamedistributionina
mple,inindoorWiFilocalization
DepartmentofComputerScienceandEngineering,HongKongUniversityof
ScienceandTechnology,ClearwaterBay,Kowloon,HongKong
Emails:{sinnopan,qyang}@
problems,whichaimstodetectauser’scurrentlocationbased
onpreviouslycollectedWiFidata,itisveryexpensiveto
calibrateWiFidataforbuildinglocalizationmodelsinalarge-
scaleenvironment,becauseauserneedstolabelalarge
r,the
WiFisignal-strengthvaluesmaybeafunctionoftime,device
trainedinonetimeperiod
orononedevicemaycausetheperformanceforlocation
estimationinanothertimeperiodoronanotherdevicetobe
cethere-calibrationeffort,wemightwishto
adaptthelocalizationmodeltrainedinonetimeperiod(the
sourcedomain)foranewtimeperiod(thetargetdomain),or
toadaptthelocalizationmodeltrainedonamobiledevice(the
sourcedomain)foranewmobiledevice(thetargetdomain),
asdonein[7].
Asathirdexample,considertheproblemofsentiment
classification,whereourtaskistoautomaticallyclassifythe
reviewsonaproduct,suchasabrandofcamera,intopositive
sclassificationtask,weneedto
firstcollectmanyreviewsoftheproductandannotatethem.
Wewouldthentrainaclassifieronthereviewswiththeir
hedistributionofreviewdata
amongdifferenttypesofproductscanbeverydifferent,to
maintaingoodclassificationperformance,weneedtocollect
alargeamountoflabeleddatainordertotrainthereview-
classifir,thisdata-
cethe
effortforannotatingreviewsforvariousproducts,wemay
wanttoadaptaclassificationmodelthatistrainedonsome
productstohelplearnclassificationmodelsforsomeother
cases,transferlearningcansaveasignificant
amountoflabelingeffort[8].
Inthissurveyarticle,wegiveacomprehensiveoverviewof
transferlearningforclassification,regressionandclustering
hasbeenalargeamountofworkontransferlearningfor
,
Digital Object Indentifier 10.1109/TKDE.2009.1911041-4347/$25.00 © 2009 IEEE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
[9],[10]).However,inthispaper,weonlyfocusontransfer
learningforclassification,regressionandclusteringproblems
g
thesurvey,wehopetoprovideausefulresourceforthedata
miningandmachinelearningcommunity.
ext
foursections,wefirstgiveageneraloverviewanddefine
brieflysurveythe
historyoftransferlearning,giveaunifieddefinitionoftransfer
learningandcategorizetransferlearningintothreedifferent
settings(giveninTable2andFigure2).Foreachsetting,we
reviewdifferentapproaches,
that,inSection6,wereviewsomecurrentresearchonthe
topicof“negativetransfer”,whichhappenswhenknowledge
ion7,
weintroducesomesuccessfulapplicationsoftransferlearning
andlistsomepublisheddatasetsandsoftwaretoolkitsfor
y,weconcludethearticlewith
adiscussionoffutureworksinSection8.
2O
VERVIEW
2.1ABriefHistoryofTransferLearning
Traditionaldataminingandmachinelearningalgorithmsmake
predictionsonthefuturedatausingstatisticalmodelsthatare
trainedonpreviouslycollectedlabeledorunlabeledtraining
data[11],[12],[13].Semi-supervisedclassification[14],[15],
[16],[17]addressestheproblemthatthelabeleddatamay
betoofewtobuildagoodclassifier,bymakinguseofa
largeamountofunlabeleddataandasmallamountoflabeled
ionsofsupervisedandsemi-supervisedlearning
forimperfectdatasetshavebeenstudied;forexample,Zhu
andWu[18]havestudiedhowtodealwiththenoisyclass-
eredcost-sensitivelearning
[19]whenadditionaltestscanbemadetofuturesamples.
Nevertheless,mostofthemassumethatthedistributionsof
erlearning,
incontrast,allowsthedomains,tasks,anddistributionsused
ealworld,we
mple,
wemayfindthatlearningtorecognizeapplesmighthelpto
rly,learningtoplaytheelectronicorgan
dyofTransfer
learningismotivatedbythefactthatpeoplecanintelligently
applyknowledgelearnedpreviouslytosolvenewproblems
damentalmotivation
forTransferlearninginthefieldofmachinelearningwas
discussedinaNIPS-95workshopon“LearningtoLearn”
1
,whichfocusedontheneedforlifelongmachine-learning
methodsthatretainandreusepreviouslylearnedknowledge.
Researchontransferlearninghasattractedmoreand
moreattentionsince1995indifferentnames:learningto
learn,life-longlearning,knowledgetransfer,inductivetrans-
fer,multi-tasklearning,knowledgeconsolidation,context-
sensitivelearning,knowledge-basedinductivebias,metalearn-
ing,andincremental/cumulativelearning[20].Amongthese,
:///courses/comp/dsilver/NIPS95LTL/
2
acloselyrelatedlearningtechniquetotransferlearningis
themulti-tasklearningframework[21],whichtriestolearn
multipletaskssimultaneouslyevenwhentheyaredifferent.
Atypicalapproachformulti-tasklearningistouncoverthe
common(latent)featuresthatcanbenefiteachindividualtask.
In2005,theBroadAgencyAnnouncement(BAA)05-29
ofDefenseAdvancedResearchProjectsAgency(DARPA)’s
InformationProcessingTechnologyOffice(IPTO)
2
gavea
newmissionoftransferlearning:theabilityofasystemto
recognizeandapplyknowledgeandskillslearnedinprevious
definition,transferlearningaims
toextracttheknowledgefromoneormoresourcetasksand
rasttomulti-task
learning,ratherthanlearningallofthesourceandtargettasks
simultaneously,transferlearningcaresmostaboutthetarget
esofthesourceandtargettasksarenolonger
symmetricintransferlearning.
Figure1showsthedifferencebetweenthelearning
wecansee,traditionalmachinelearningtechniquestrytolearn
eachtaskfromscratch,whiletransferlearningtechniquestry
totransfertheknowledgefromsomeprevioustaskstoatarget
taskwhenthelatterhasfewerhigh-qualitytrainingdata.
(a)TraditionalMachineLearning(b)TransferLearning
entLearningProcessesbetweenTraditional
MachineLearningandTransferLearning
Today,transferlearningmethodsappearinseveraltop
venues,mostnotablyindatamining(ACMKDD,IEEEICDM
andPKDD,forexample),machinelearning(ICML,NIPS,
ECML,AAAIandIJCAI,forexample)andapplicationsof
machinelearninganddatamining(ACMSIGIR,WWWand
ACLforexample)
3
.Beforewegivedifferentcategorizations
oftransferlearning,wefirstdescribethenotationsusedinthis
article.
2.2NotationsandDefinitions
Inthissection,weintroducesomenotationsanddefinitions
fall,wegivethedefinitions
ofa“domain”anda“task”,respectively.
Inthissurvey,adomainDconsistsoftwocomponents:a
featurespaceXandamarginalprobabilitydistributionP(X),
whereX={x
1
,...,x
n
}∈mple,ifourlearning
:///ipto/programs/tl/
arizealistofconferencesandworkshopswheretransfer
learningpapersappearinthesefewyearsinthefollowingwebpagefor
reference,/∼sinnopan/
发布者:admin,转转请注明出处:http://www.yc00.com/xitong/1713144092a2191556.html
评论列表(0条)