AlphaStar: Mastering the Real-Time Strategy Game StarCraft II 博客阅读

原文:https:deepmindblogalphastar-mastering-real-time-strategy-game-starcraft-ii SLsupervised learning, RL

原文:https://deepmind/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii

 

SL = supervised learning, RL = reinforcement learning

 

  • how AlphaStar is trained

units, properties -> DNN -> instructions

DNN: transform torso(relational deep RL), deep LSTM core, auto-regressive policy head with pointer network, centralised value baseline

train: SL -> mico/macro strategies

        compete -> hyper parameters updated by RL -> Nash distribution -> final agent

multi-agent RL: play against each other: population-based, multi-agent RL -> huge strategic space -> defeat strongest and eariler ones

 

explore new build orders, unit compositions, micro-management plans

personal objective: beat specific competitor/beat distribution of competitors/building more of specific unit

NN weights: off-policy actor-critic RL with experience replay, self-imitation learning, policy distillation

 

run on TPUs, final agent: Nash distribution of the league: best mixture of strategies

 

  • how AlphaStar plays and how to evaluate

TLO/MaNa  ~ 100 APM

agent  ~ 1000, 10000 APM

AlphaStar vs. TLO/MaNa  ~280 APM (read screen frames use raw interface)

AlphaStar act: observation -> action: 350ms/avg, process every frame

results: 5:0

 

转载于:https://wwwblogs/yaoyaohust/p/10815039.html

发布者:admin,转转请注明出处:http://www.yc00.com/web/1754916712a5215012.html

相关推荐

发表回复

评论列表(0条)

  • 暂无评论

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信