欢迎您的阅读,接下来我将为您一步步分析:100 个 LLM ChatGPT Prompt 最佳实践指南。让我们通过多个角度来探讨这个主题,以确保全面和深入的理解。
100 个 LLM ChatGPT Prompt 最佳实践指南
Welcome to this comprehensive guide on 100 best practices for LLM ChatGPT prompts. We’ll explore this topic step by step, covering various aspects to ensure a thorough understanding.
文章目录
- 100 个 LLM ChatGPT Prompt 最佳实践指南
- 1. 理解 LLM 和 ChatGPT 的基本概念
- 2. Prompt 设计的重要性
- 3. Prompt 设计的基本原则
- 4. 100 个最佳实践分类
- 5. 基础技巧(1-20)
- 6. 任务特定技巧(21-40)
- 7. 角色扮演技巧(41-60)
- 8. 创意激发技巧(61-80)
- 9. 高级技巧(81-100)
- 10. 实施和优化
- 11. 数学公式和算法原理
- 12. 源代码示例
- 13. 项目实战案例
- 14. 推荐学习资料
- 15. 总结与展望
- 参考文献
1. 理解 LLM 和 ChatGPT 的基本概念
Understanding the Basic Concepts of LLM and ChatGPT
在开始探讨最佳实践之前,我们需要先理解一些基本概念:
- LLM(Large Language Model):大型语言模型,是一种基于深度学习的自然语言处理模型。
- ChatGPT:由 OpenAI 开发的基于 GPT(Generative Pre-trained Transformer)架构的对话 AI 模型。
- Prompt:输入到 LLM 的指令或问题,用于引导模型生成特定的输出。
Before diving into best practices, let’s understand some basic concepts:
- LLM (Large Language Model): A deep learning-based natural language processing model.
- ChatGPT: A conversational AI model developed by OpenAI, based on the GPT (Generative Pre-trained Transformer) architecture.
- Prompt: The input instruction or question given to an LLM to guide it in generating specific outputs.
理解这些概念将有助于我们更好地把握 prompt 设计的重要性和技巧。
Understanding these concepts will help us better grasp the importance and techniques of prompt design.
2. Prompt 设计的重要性
The Importance of Prompt Design
Prompt 设计对于获得高质量、相关的 AI 输出至关重要:
- 引导输出:精心设计的 prompt 可以引导 AI 生成更准确、相关的回答。
- 控制上下文:通过 prompt 可以为 AI 提供必要的背景信息和上下文。
- 提高效率:好的 prompt 可以减少来回交互的次数,更快地获得所需信息。
- 创造性应用:巧妙的 prompt 设计可以激发 AI 的创造性,产生意想不到的结果。
Prompt design is crucial for obtaining high-quality, relevant AI outputs:
- Guiding output: Well-designed prompts can guide AI to generate more accurate and relevant answers.
- Controlling context: Prompts provide necessary background information and context for the AI.
- Improving efficiency: Good prompts can reduce the number of back-and-forth interactions, obtaining required information faster.
- Creative applications: Clever prompt design can inspire AI’s creativity, producing unexpected results.
3. Prompt 设计的基本原则
Basic Principles of Prompt Design
在设计 prompt 时,应遵循以下基本原则:
- 清晰性:使用简洁、明确的语言表达你的需求。
- 具体性:提供具体的指示和示例,而不是笼统的描述。
- 结构化:使用结构化的格式,如列表或步骤,使 prompt 更易理解。
- 上下文提供:给出必要的背景信息,帮助 AI 理解任务。
- 迭代优化:根据 AI 的响应不断调整和改进 prompt。
When designing prompts, follow these basic principles:
- Clarity: Use concise, clear language to express your needs.
- Specificity: Provide specific instructions and examples rather than vague descriptions.
- Structure: Use structured formats like lists or steps to make the prompt easier to understand.
- Context provision: Give necessary background information to help AI understand the task.
- Iterative optimization: Continuously adjust and improve the prompt based on AI responses.
4. 100 个最佳实践分类
Categorization of 100 Best Practices
为了更好地组织和理解这 100 个最佳实践,我们可以将它们分为以下几个类别:
- 基础技巧(1-20):适用于所有类型的 prompt 的基本技巧。
- 任务特定技巧(21-40):针对特定类型任务(如写作、编程、分析)的技巧。
- 角色扮演技巧(41-60):如何让 AI 扮演特定角色以获得更好的结果。
- 创意激发技巧(61-80):如何设计 prompt 以激发 AI 的创造力。
- 高级技巧(81-100):更复杂、高级的 prompt 设计技巧。
To better organize and understand these 100 best practices, we can categorize them as follows:
- Basic Techniques (1-20): Fundamental techniques applicable to all types of prompts.
- Task-Specific Techniques (21-40): Techniques for specific types of tasks (e.g., writing, programming, analysis).
- Role-Playing Techniques (41-60): How to make AI play specific roles for better results.
- Creativity-Boosting Techniques (61-80): How to design prompts to inspire AI’s creativity.
- Advanced Techniques (81-100): More complex and advanced prompt design techniques.
5. 基础技巧(1-20)
Basic Techniques (1-20)
以下是 20 个基础的 prompt 设计技巧:
- 使用清晰、简洁的语言
- 提供具体的指示和要求
- 使用结构化格式(如列表、步骤)
- 指定所需输出的格式
- 设置字数或长度限制
- 使用示例说明期望的输出
- 提供必要的背景信息
- 使用开放式问题激发思考
- 使用封闭式问题获取具体信息
- 设置角色或身份(如"你是一位专家")
- 使用条件语句(如"如果…那么…")
- 要求 AI 解释其推理过程
- 使用比喻或类比来阐明复杂概念
- 设置优先级或重要性级别
- 使用多步骤 prompt 分解复杂任务
- 要求 AI 提供多个选项或方案
- 使用反向思考(如"不要做什么")
- 设置时间或情境背景
- 使用 “Let’s think step by step” 促进逐步思考
- 要求 AI 在回答前重述问题以确保理解
Here are 20 basic prompt design techniques:
- Use clear, concise language
- Provide specific instructions and requirements
- Use structured formats (e.g., lists, steps)
- Specify the desired output format
- Set word count or length limits
- Use examples to illustrate expected output
- Provide necessary background information
- Use open-ended questions to stimulate thinking
- Use closed-ended questions to obtain specific information
- Set roles or identities (e.g., “You are an expert”)
- Use conditional statements (e.g., “If… then…”)
- Ask AI to explain its reasoning process
- Use metaphors or analogies to clarify complex concepts
- Set priorities or importance levels
- Use multi-step prompts to break down complex tasks
- Ask AI to provide multiple options or solutions
- Use reverse thinking (e.g., “What not to do”)
- Set time or situational context
- Use “Let’s think step by step” to promote gradual thinking
- Ask AI to restate the question before answering to ensure understanding
6. 任务特定技巧(21-40)
Task-Specific Techniques (21-40)
以下是 20 个针对特定任务的 prompt 设计技巧:
- 写作任务:提供文章大纲或关键点
- 编程任务:指定编程语言和代码风格
- 分析任务:提供数据源或数据格式
- 翻译任务:指定源语言和目标语言
- 摘要任务:设定摘要的关键要素
- 创意写作:提供场景、角色或主题
- 问答任务:提供参考资料或知识范围
- 数学问题:要求显示计算步骤
- 营销任务:指定目标受众和营销目标
- 研究任务:提供研究问题和方法论
- 音乐创作:指定音乐风格和乐器
- 视觉设计:描述所需的视觉元素和风格
- 演讲稿写作:指定演讲时长和目的
- 产品描述:提供产品特性和目标市场
- 食谱创作:指定主要原料和烹饪方法
- 旅行规划:提供目的地、预算和时间
- 健身计划:指定健身目标和可用设备
- 教育课程设计:提供学习目标和目标受众
- 商业计划:指定行业和市场条件
- 故事创作:提供故事类型和关键情节点
Here are 20 task-specific prompt design techniques:
- Writing tasks: Provide article outline or key points
- Programming tasks: Specify programming language and code style
- Analysis tasks: Provide data sources or data format
- Translation tasks: Specify source and target languages
- Summarization tasks: Set key elements for the summary
- Creative writing: Provide scenarios, characters, or themes
- Q&A tasks: Provide reference materials or knowledge scope
- Math problems: Request to show calculation steps
- Marketing tasks: Specify target audience and marketing goals
- Research tasks: Provide research questions and methodology
- Music composition: Specify music style and instruments
- Visual design: Describe desired visual elements and style
- Speech writing: Specify speech duration and purpose
- Product description: Provide product features and target market
- Recipe creation: Specify main ingredients and cooking methods
- Travel planning: Provide destination, budget, and time
- Fitness planning: Specify fitness goals and available equipment
- Educational course design: Provide learning objectives and target audience
- Business planning: Specify industry and market conditions
- Story creation: Provide story type and key plot points
7. 角色扮演技巧(41-60)
Role-Playing Techniques (41-60)
以下是 20 个角色扮演相关的 prompt 设计技巧:
- 明确定义角色:如"你是一位经验丰富的财务顾问"
- 提供角色背景:包括经验、专业知识等
- 设置场景:如"你正在参加一个重要的商业会议"
- 指定目标受众:如"你正在向初学者解释"
- 使用多重角色:如"扮演支持者和反对者"
- 时代背景设定:如"你是生活在19世纪的科学家"
- 文化背景设定:如"你是来自东亚文化的哲学家"
- 情感状态设定:如"你是一位充满热情的教育工作者"
- 年龄段设定:如"你是一位睿智的长者"
- 专业领域设定:如"你是一位人工智能伦理专家"
- 角色互动:如"你是老师,我是学生"
- 虚构角色扮演:如"你是哈利·波特中的邓布利多"
- 历史人物扮演:如"你是阿尔伯特·爱因斯坦"
- 跨学科角色:如"你是一位艺术家兼科学家"
- 对立观点角色:如"你是一位持怀疑态度的评论家"
- 时间旅行者角色:如"你是来自未来的观察者"
- 非人类视角:如"你是一棵古老的树"
- 职业角色:如"你是一位经验丰富的调酒师"
- 团队角色:如"你是一个产品开发团队的负责人"
- 角色演变:如"你是一个从新手成长为专家的程序员"
Here are 20 role-playing related prompt design techniques:
- Clearly define the role: e.g., “You are an experienced financial advisor”
- Provide role background: including experience, expertise, etc.
- Set the scene: e.g., “You are attending an important business meeting”
- Specify the target audience: e.g., “You are explaining to beginners”
- Use multiple roles: e.g., “Play both supporter and opponent”
- Set historical context: e.g., “You are a scientist living in the 19th century”
- Set cultural background: e.g., “You are a philosopher from East Asian culture”
- Set emotional state: e.g., “You are a passionate educator”
- Set age group: e.g., “You are a wise elder”
- Set professional field: e.g., “You are an AI ethics expert”
- Role interaction: e.g., “You are the teacher, I am the student”
- Fictional character role-play: e.g., “You are Dumbledore from Harry Potter”
- Historical figure role-play: e.g., “You are Albert Einstein”
- Interdisciplinary role: e.g., “You are an artist and scientist”
- Opposing viewpoint role: e.g., “You are a skeptical critic”
- Time traveler role: e.g., “You are an observer from the future”
- Non-human perspective: e.g., “You are an ancient tree”
- Professional role: e.g., “You are an experienced bartender”
- Team role: e.g., “You are the leader of a product development team”
- Role evolution: e.g., “You are a programmer who grew from novice to expert”
8. 创意激发技巧(61-80)
Creativity-Boosting Techniques (61-80)
以下是 20 个用于激发创意的 prompt 设计技巧:
- 使用随机单词组合:提供几个不相关的单词,要求创造性地连接它们
- 反向思考:要求思考问题的反面或相反情况
- 时间跨度挑战:要求考虑极远的过去或未来
- 跨领域联想:将不同领域的概念结合起来
- “如果"场景:创造假设情境,如"如果重力突然消失”
- 角色转换:从不同角色或物体的视角看问题
- 限制创新:在特定限制下寻找创新方法
- 类比思考:使用类比来解释或探索概念
- 问题重构:以不同方式重新表述问题
- 极端场景:考虑极端或夸张的情况
- 随机元素整合:将随机元素整合到解决方案中
- 感官描述挑战:使用所有感官来描述概念
- 历史重塑:重新想象历史事件的不同结果
- 未来预测:基于当前趋势预测未来场景
- 混合风格:结合不同的艺术或文学风格
- 角色融合:将不同角色或概念融合
- 逆向工程:从结果推导过程
- 平行宇宙:探索同一情景的多个可能性
- 规则改写:改变既定规则,探索新可能性
- 概念拟人化:将抽象概念拟人化
Let’s continue exploring prompt design techniques for inspiring creativity:
- Use random word combinations: Provide unrelated words and ask to creatively connect them
- Reverse thinking: Ask to consider the opposite or reverse of a problem
- Time span challenge: Consider the extreme past or future
- Cross-domain association: Combine concepts from different fields
- “What if” scenarios: Create hypothetical situations, like “What if gravity suddenly disappeared”
- Role reversal: View problems from different roles or objects’ perspectives
- Constrained innovation: Find innovative methods under specific constraints
- Analogical thinking: Use analogies to explain or explore concepts
- Problem reframing: Restate the problem in different ways
- Extreme scenarios: Consider extreme or exaggerated situations
- Random element integration: Integrate random elements into solutions
- Sensory description challenge: Use all senses to describe concepts
- Historical reimagining: Reimagine different outcomes of historical events
- Future prediction: Predict future scenarios based on current trends
- Style blending: Combine different artistic or literary styles
- Character fusion: Merge different characters or concepts
- Reverse engineering: Derive the process from the result
- Parallel universes: Explore multiple possibilities of the same scenario
- Rule rewriting: Change established rules to explore new possibilities
- Concept personification: Personify abstract concepts
9. 高级技巧(81-100)
Advanced Techniques (81-100)
以下是 20 个高级的 prompt 设计技巧:
- 多模态提示:结合文本、图像或音频输入
- 链式推理:要求 AI 通过多个步骤进行推理
- 元认知提示:要求 AI 反思自己的思考过程
- 对抗性提示:故意提供有挑战性或矛盾的信息
- 概率思考:要求 AI 考虑多种可能性及其概率
- 伦理决策框架:在伦理框架下分析问题
- 系统思考:考虑问题的整体系统和相互关联
- 跨时间尺度分析:同时考虑短期和长期影响
- 多维度评估:从多个维度评估问题或解决方案
- 假设检验:提出并验证假设
- 反事实思考:探索"如果没有发生"的情况
- 元分析:综合多个来源的信息进行分析
- 递归提示:在 prompt 中嵌套 prompt
- 偏见识别:识别和减少潜在的偏见
- 创新指标:定义和使用创新性的评估指标
- 情境适应:根据不同情境调整回答
- 跨文化视角:从不同文化角度分析问题
- 认知偏差纠正:识别和纠正常见的认知偏差
- 元语言分析:分析语言本身的结构和用法
- 综合集成:整合多种技巧创建复杂的 prompt
Here are 20 advanced prompt design techniques:
- Multimodal prompting: Combine text, image, or audio inputs
- Chain-of-thought reasoning: Ask AI to reason through multiple steps
- Metacognitive prompting: Ask AI to reflect on its own thinking process
- Adversarial prompting: Deliberately provide challenging or contradictory information
- Probabilistic thinking: Ask AI to consider multiple possibilities and their probabilities
- Ethical decision frameworks: Analyze problems within ethical frameworks
- Systems thinking: Consider the whole system and interconnections of a problem
- Cross-temporal scale analysis: Consider both short-term and long-term impacts simultaneously
- Multi-dimensional evaluation: Evaluate problems or solutions from multiple dimensions
- Hypothesis testing: Propose and test hypotheses
- Counterfactual thinking: Explore “what if it hadn’t happened” scenarios
- Meta-analysis: Synthesize information from multiple sources for analysis
- Recursive prompting: Nest prompts within prompts
- Bias identification: Identify and reduce potential biases
- Innovation metrics: Define and use innovative evaluation metrics
- Contextual adaptation: Adjust answers based on different contexts
- Cross-cultural perspectives: Analyze problems from different cultural viewpoints
- Cognitive bias correction: Identify and correct common cognitive biases
- Metalinguistic analysis: Analyze the structure and usage of language itself
- Comprehensive integration: Integrate multiple techniques to create complex prompts
10. 实施和优化
Implementation and Optimization
了解了这 100 个最佳实践后,我们需要考虑如何实施和优化这些技巧:
- 循序渐进:从基础技巧开始,逐步尝试更高级的技巧。
- 持续实验:不断尝试不同的 prompt 设计,记录效果。
- 上下文适应:根据具体任务和场景选择合适的技巧。
- 组合应用:将多个技巧结合使用,创造更强大的 prompt。
- 反馈循环:根据 AI 的响应不断调整和改进 prompt。
- 用户体验:考虑最终用户的需求和体验。
- 效率平衡:在 prompt 复杂性和效率之间找到平衡。
- 持续学习:关注 LLM 和 prompt 工程的最新发展。
After understanding these 100 best practices, we need to consider how to implement and optimize these techniques:
- Gradual progression: Start with basic techniques and gradually try more advanced ones.
- Continuous experimentation: Constantly try different prompt designs and record their effects.
- Contextual adaptation: Choose appropriate techniques based on specific tasks and scenarios.
- Combinatorial application: Combine multiple techniques to create more powerful prompts.
- Feedback loop: Continuously adjust and improve prompts based on AI responses.
- User experience: Consider the needs and experiences of end users.
- Efficiency balance: Find a balance between prompt complexity and efficiency.
- Continuous learning: Stay updated on the latest developments in LLMs and prompt engineering.
11. 数学公式和算法原理
Mathematical Formulas and Algorithm Principles
虽然 prompt 设计更多是一门艺术而非科学,但我们可以借鉴一些数学和算法原理来优化我们的 prompt:
-
信息熵(Information Entropy):
H(X) = -Σ P(x) log₂ P(x)使用信息熵的概念来评估 prompt 的信息量,确保 prompt 既不过于模糊也不过于具体。
-
余弦相似度(Cosine Similarity):
cos(θ) = (A · B) / (||A|| ||B||)用于比较不同 prompt 或 prompt 与响应之间的相似度,帮助优化 prompt。
-
TF-IDF(Term Frequency-Inverse Document Frequency):
TF-IDF = TF(t) * IDF(t)用于识别 prompt 中的关键词,优化 prompt 的关键信息。
-
遗传算法(Genetic Algorithm)原理:
应用遗传算法的思想,通过"变异"和"交叉"来生成和优化 prompt。 -
强化学习(Reinforcement Learning)原理:
将 prompt 设计视为一个决策过程,通过不断尝试和反馈来优化 prompt。
Although prompt design is more of an art than a science, we can borrow some mathematical and algorithmic principles to optimize our prompts:
-
Information Entropy:
H(X) = -Σ P(x) log₂ P(x)Use the concept of information entropy to evaluate the information content of prompts, ensuring they are neither too vague nor too specific.
-
Cosine Similarity:
cos(θ) = (A · B) / (||A|| ||B||)Used to compare the similarity between different prompts or between prompts and responses, helping to optimize prompts.
-
TF-IDF (Term Frequency-Inverse Document Frequency):
TF-IDF = TF(t) * IDF(t)Used to identify keywords in prompts, optimizing key information in prompts.
-
Genetic Algorithm Principles:
Apply the ideas of genetic algorithms, using “mutation” and “crossover” to generate and optimize prompts. -
Reinforcement Learning Principles:
View prompt design as a decision-making process, optimizing prompts through continuous trial and feedback.
12. 源代码示例
Source Code Examples
以下是一些 Python 代码示例,展示如何实现一些 prompt 优化技术:
- 使用 NLTK 计算信息熵:
import nltk
from math import log2
def calculate_entropy(prompt):
freq_dist = nltk.FreqDist(prompt.split())
entropy = 0
for word in freq_dist:
prob = freq_dist.freq(word)
entropy -= prob * log2(prob)
return entropy
prompt = "How can I improve my programming skills?"
entropy = calculate_entropy(prompt)
print(f"Prompt entropy: {entropy}")
- 使用 scikit-learn 计算余弦相似度:
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def compute_similarity(prompt1, prompt2):
vectorizer = CountVectorizer().fit_transform([prompt1, prompt2])
vectors = vectorizer.toarray()
return cosine_similarity(vectors)[0][1]
prompt1 = "What are the best practices for machine learning?"
prompt2 = "How to improve machine learning models?"
similarity = compute_similarity(prompt1, prompt2)
print(f"Cosine similarity: {similarity}")
- 使用 NLTK 实现简单的 prompt 生成器:
import nltk
import random
def generate_prompt(template, word_lists):
prompt = template
for key, words in word_lists.items():
prompt = prompt.replace(f"{{{key}}}", random.choice(words))
return prompt
template = "How can I {action} my {skill} in {timeframe}?"
word_lists = {
"action": ["improve", "enhance", "develop", "boost"],
"skill": ["programming", "writing", "communication", "problem-solving"],
"timeframe": ["one month", "six months", "a year"]
}
for _ in range(3):
print(generate_prompt(template, word_lists))
These Python code examples demonstrate how to implement some prompt optimization techniques:
- Using NLTK to calculate information entropy
- Using scikit-learn to compute cosine similarity
- Using NLTK to implement a simple prompt generator
These examples provide a starting point for programmatically working with and optimizing prompts.
13. 项目实战案例
Practical Project Case
让我们考虑一个实际的项目案例,展示如何应用这些 prompt 设计技巧:
项目:开发一个智能写作助手
目标:创建一个能够帮助用户改进写作的 AI 系统,包括语法纠正、风格建议和内容优化。
步骤:
-
基础 prompt 设计:
请分析以下文本,提供语法纠正和写作建议: [用户输入的文本]
-
角色扮演技巧:
作为一位经验丰富的编辑和写作教练,请分析以下文本: [用户输入的文本] 提供以下方面的反馈: 1. 语法和拼写纠正 2. 句子结构改进建议 3. 词语选择优化 4. 整体风格和语气建议
-
任务特定技巧:
目标:改进学术论文写作 文本类型:研究论文摘要 目标受众:学术期刊审稿人 请分析以下研究论文摘要: [用户输入的摘要] 提供以下反馈: 1. 清晰度和简洁性 2. 学术用语的准确性 3. 研究目的、方法、结果和结论的呈现 4. 改进建议
-
创意激发技巧:
想象你是一位来自未来的语言学家,你掌握了人类语言演变的全过程。请分析以下文本,并提供未来语言发展趋势的视角: [用户输入的文本] 请提供以下反馈: 1. 当前语言使用的优点和局限性 2. 未来可能的语言演变方向 3. 如何使当前写作更具前瞻性和创新性 4. 在保持清晰度的同时,如何融入未来语言元素
-
高级技巧 - 多维度评估:
请从以下五个维度对文本进行全面分析: 1. 语法准确性 (1-10分) 2. 表达清晰度 (1-10分) 3. 论证逻辑性 (1-10分) 4. 创意独特性 (1-10分) 5. 情感感染力 (1-10分) 文本: [用户输入的文本] 对每个维度进行评分,并提供具体的改进建议。同时,请计算总分并给出整体评价。
-
反馈循环优化:
基于用户的使用反馈,我们可以不断调整和优化 prompt。例如:基于之前的反馈,用户发现语法建议有时过于学术化。请以友好、易懂的口吻分析以下文本,重点关注日常写作中常见的错误: [用户输入的文本] 提供建议时,请: 1. 使用简单、直观的解释 2. 提供具体的改写示例 3. 解释为什么这些改变会提升写作质量
-
个性化定制:
用户偏好设置: - 写作风格:幽默轻松 - 专业领域:科技博客 - 目标受众:年轻科技爱好者 - 改进重点:增加趣味性和互动性 基于以上用户偏好,请分析并优化以下文本: [用户输入的文本] 请提供: 1. 符合用户风格的修改建议 2. 增加趣味性和互动性的具体方法 3. 如何使内容更贴近年轻科技爱好者的兴趣
Let’s continue exploring the practical case of the intelligent writing assistant project:
- Creativity-boosting technique
- Advanced technique - Multi-dimensional evaluation
- Feedback loop optimization
- Personalized customization
These examples demonstrate how to apply various prompt design techniques in a real-world project scenario, creating a sophisticated and user-friendly AI writing assistant.
14. 推荐学习资料
Recommended Learning Resources
为了深入学习和掌握 LLM 和 ChatGPT Prompt 设计,以下是一些推荐的学习资料:
-
书籍:
- “Prompt Engineering for ChatGPT and GPT-3” by Brendan Kohler
- “Natural Language Processing with Transformers” by Lewis Tunstall, Leandro von Werra, and Thomas Wolf
- “AI 2041: Ten Visions for Our Future” by Kai-Fu Lee and Chen Qiufan
-
在线课程:
- Coursera: “ChatGPT Prompt Engineering for Developers” by DeepLearning.AI
- Udemy: “Master ChatGPT Prompts: A Complete Guide to ChatGPT Mastery” by Abid Rahim
- edX: “Natural Language Processing” by Microsoft
-
学术论文:
- “Language Models are Few-Shot Learners” by Brown et al. (GPT-3 paper)
- “Training language models to follow instructions with human feedback” by OpenAI (InstructGPT paper)
- “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models” by Wei et al.
-
网站和博客:
- OpenAI’s GPT-3 Playground and Documentation
- Hugging Face’s Transformers Library Documentation
- “The Prompt Engineering Guide” by Dair.ai
-
GitHub 仓库:
- “Awesome ChatGPT Prompts” by f
- “GPT-3 Prompt Engineering” by snwfdhmp
- “Learn Prompting” by trigaten
-
播客:
- “The TWIML AI Podcast” episodes on LLMs and prompt engineering
- “Practical AI” by Changelog
-
社区和论坛:
- Reddit: r/MachineLearning and r/GPT3
- Stack Overflow: tags [gpt-3] and [chatgpt]
- AI and ML focused Discord servers
To deepen your understanding and mastery of LLM and ChatGPT Prompt design, here are some recommended learning resources:
- Books
- Online Courses
- Academic Papers
- Websites and Blogs
- GitHub Repositories
- Podcasts
- Communities and Forums
These resources cover a wide range of materials from theoretical foundations to practical applications, catering to learners at different levels.
15. 总结与展望
Summary and Future Prospects
通过本指南,我们深入探讨了 100 个 LLM ChatGPT Prompt 最佳实践。让我们总结关键点并展望未来:
关键总结:
- Prompt 设计是一门艺术,需要不断实践和优化。
- 基础技巧为所有 prompt 设计奠定基础。
- 任务特定技巧帮助针对不同应用场景优化 prompt。
- 角色扮演和创意激发技巧可以产生更有创意和深度的结果。
- 高级技巧能够进一步提升 prompt 的效果和 AI 输出的质量。
- 实施和优化过程中,需要考虑实际应用场景和用户需求。
- 结合数学和算法原理可以帮助我们更系统地优化 prompt。
- 持续学习和跟进最新研究对保持竞争力至关重要。
未来展望:
- 多模态 Prompt:结合文本、图像、音频的 prompt 设计将成为趋势。
- 个性化 Prompt:基于用户偏好和历史交互自动调整的 prompt。
- 动态 Prompt:能够根据对话上下文实时调整的自适应 prompt。
- Prompt 优化工具:自动化工具辅助 prompt 设计和优化。
- 跨语言 Prompt:能够在多种语言间无缝转换的 prompt 设计。
- 伦理和偏见aware Prompt:更注重伦理考量和减少偏见的 prompt 设计。
- 元学习 Prompt:能够学习如何生成更好 prompt 的 AI 系统。
- 领域特定 Prompt:针对特定专业领域优化的 prompt 模板和技巧。
Through this guide, we have delved into 100 best practices for LLM ChatGPT Prompts. Let’s summarize the key points and look towards the future:
Key Summary:
- Prompt design is an art that requires continuous practice and optimization.
- Basic techniques lay the foundation for all prompt designs.
- Task-specific techniques help optimize prompts for different application scenarios.
- Role-playing and creativity-boosting techniques can produce more creative and in-depth results.
- Advanced techniques can further enhance the effectiveness of prompts and the quality of AI output.
- During implementation and optimization, practical application scenarios and user needs must be considered.
- Incorporating mathematical and algorithmic principles can help us optimize prompts more systematically.
- Continuous learning and keeping up with the latest research is crucial to maintaining competitiveness.
Future Prospects:
- Multimodal Prompts
- Personalized Prompts
- Dynamic Prompts
- Prompt Optimization Tools
- Cross-lingual Prompts
- Ethics and Bias-aware Prompts
- Meta-learning Prompts
- Domain-specific Prompts
As the field of AI and language models continues to evolve, so too will the art and science of prompt engineering. Staying adaptable and curious will be key to mastering this dynamic field.
参考文献
References
-
Brown, T. B., et al. (2020). “Language Models are Few-Shot Learners.” arXiv preprint arXiv:2005.14165.
-
Ouyang, L., et al. (2022). “Training language models to follow instructions with human feedback.” arXiv preprint arXiv:2203.02155.
-
Wei, J., et al. (2022). “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.” arXiv preprint arXiv:2201.11903.
-
Kojima, T., et al. (2022). “Large Language Models are Zero-Shot Reasoners.” arXiv preprint arXiv:2205.11916.
-
Liu, P., et al. (2021). “Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing.” arXiv preprint arXiv:2107.13586.
-
Sanh, V., et al. (2021). “Multitask Prompted Training Enables Zero-Shot Task Generalization.” arXiv preprint arXiv:2110.08207.
-
Khashabi, D., et al. (2022). “Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm.” arXiv preprint arXiv:2102.07350.
-
Reynolds, L., & McDonell, K. (2021). “Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm.” CHI Conference on Human Factors in Computing Systems (CHI '21).
-
OpenAI. (2023). “GPT-4 Technical Report.” https://arxiv/abs/2303.08774
-
Google. (2022). “PaLM: Scaling Language Modeling with Pathways.” https://arxiv/abs/2204.02311
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
发布者:admin,转转请注明出处:http://www.yc00.com/web/1754769029a5199898.html
评论列表(0条)