2023年7月17日发(作者:)
薄膜晶体管液晶显⽰器显⽰原理与设计薄膜晶体管液晶显⽰器显⽰原理与设计1 液晶显⽰的基本概念1.1 液晶简介1.2 液晶的特性1.2.1 电学各向异性1.2.2 光学各向异性1.2.3 ⼒学特性1.2.4 其他特性1.电阻率2.黏度系数3.相转变温度1.3 偏光⽚1.3.1 偏光⽚的基本原理1.3.2 偏光⽚的基本构成1.PVA层2.TAC层3.PSA层4.离型膜和保护膜5.补偿膜1.3.3 偏光⽚的参数1.偏振度2.透过率3.可靠性4.剥离⼒5.外观指标1.3.4 偏光⽚的表⾯处理1.4 玻璃基板1.5 液晶显⽰的基本原理1.5.1 液晶显⽰器的基本结构1.5.2 液晶显⽰原理1.6 显⽰器的光电特性1.6.1 透过率1.6.2 对⽐度1.6.3 响应时间1.6.4 视⾓1.按对⽐度定义2.按灰阶反转定义3.按⾊偏定义1.6.5 ⾊域1.6.6 ⾊温1.7 画质改善技术1.7.1 量⼦点技术1.7.2 ⾼动态范围图像技术1.7.3 局域调光技术1.7.4 姆拉擦除技术1.7.5 运动图像补偿技术1.7.6 帧频转换技术1.8 ⽴体显⽰技术原理1.8.1 双眼视差1.8.2 ⽴体显⽰技术分类1.8.3 眼镜式3D显⽰技术1.快门眼镜式3D显⽰2.偏光眼镜式3D显⽰1.8.4 裸眼3D显⽰技术1.视差光栅式裸眼3D显⽰2.柱棱镜式裸眼3D显⽰1.8.5 3D显⽰的主要问题2 氢化⾮晶硅薄膜晶体管材料与器件特性2.1 氢化⾮晶硅薄膜的特点2.1.1 原⼦排列和电⼦的态密度2.1.2 氢化⾮晶硅的导电机理2.1.3 氢化⾮晶硅的亚稳定性2.2 绝缘层材料的特点2.2.1 氮化硅2.2.2 氧化硅2.2.3 绝缘层的导电机理1.离⼦导电2.空间电荷限制电流3.隧穿和内场发射4.肖特基发射和Poole-Frenkel效应5.欧姆导电2.3 薄膜沉积2.3.1 概述2.3.2 a-Si:H薄膜的沉积2.3.3 a-Si:H薄膜的影响因素1.等离⼦体功率的影响3.a-Si:H薄膜的本体效应4.a-Si:H薄膜的光电导效应5.a-Si:H薄膜迁移率的提⾼2.3.4 n+a-Si:H薄膜的沉积2.3.5 绝缘层薄膜的沉积1.绝缘层薄膜的沉积⽅法2.SiNx薄膜的沉积⼯艺2.3.6 薄膜的界⾯效应1.界⾯粗糙度和应⼒的影响2.界⾯特性的改善2.4 薄膜刻蚀2.4.1 导电薄膜的刻蚀2.4.2 功能薄膜的刻蚀2.5 TFT器件结构与特点2.5.1 底栅结构1.背沟道刻蚀型结构2.刻蚀阻挡层型结构2.5.2 顶栅结构2.5.3 器件基本特性1.线性区2.饱和区3.亚阈值区4.截⽌区2.6 器件电学性能的不稳定性2.7 薄膜评价⽅法2.7.1 傅⾥叶变换红外光谱2.7.2 紫外线-可见光谱2.7.3 恒定光电流⽅法2.7.4 拉曼光谱2.7.5 椭偏仪3 液晶⾯板设计与驱动3.1 显⽰屏的构成3.1.1 显⽰区1.分辨率2.像素尺⼨计算3.像素排列⽅式4.像素驱动结构3.1.2 密封区3.1.3 衬垫区3.1.4 特征标记1.切割标记2.研磨标记3.⼯艺标记4.重叠标记5.总节距标记3.2 玻璃基板上薄膜的边界条件3.2.1 彩膜基板上的边界条件3.2.2 阵列基板上的边界条件3.3 液晶显⽰模式与原理3.3.1 液晶显⽰模式3.3.2 液晶显⽰光阀原理3.4 曝光⼯艺技术3.4.1 掩模版3.4.2 曝光机类型3.4.3 光刻⼯艺3.4.4 五次/四次光刻⼯艺过程3.4.5 光透过率调制掩模版技术3.5 像素设计原理3.5.1 电容1.液晶电容计算2.液晶动态电容效应3.像素存储电容结构4.像素等价电路结构及各电容计算5.电容耦合效应6.像素馈⼊电压3.5.2 像素中电阻计算3.5.3 TFT性能要求1.TFT开关⽐的要求2.TFT开态电阻和关态电阻3.5.4 像素充电率模拟1.输⼊信号延迟2.充电率模拟3.6 ⾯板的驱动3.6.1 ⾯板的电路驱动原理图3.6.2 极性反转驱动1.极性反转驱动⽅式2.驱动电压的⽅均根3.极性反转驱动的必要性3.7 GOA驱动原理3.7.1 GOA基本概念3.7.2 GOA⼯作原理1.4T1C单元结构2.8T1C单元结构3.PU与PD点的优化设计4.冗余GOA单元结构设计3.7.3 GOA 设计1.GOA输出信号参数与噪声抑制2.多时钟信号的GOA设计3.7.4 GOA的模拟仿真1.GOA模型与各TFT器件参数的确定2.外部环境参数对GOA的影响3.7.5 GOA设计的其他考虑4 液晶显⽰颜⾊基础4.1 ⾊度基础4.1.1 可见光谱4.1.2 辐射度与光度4.1.3 颜⾊的辨认4.1.4 颜⾊三要素1.⾊调2.明度3.饱和度4.2 颜⾊的表征4.2.1 格拉斯曼混合定律1.中间⾊率2.补⾊率3.代替率4.亮度相加率4.2.2 光谱三刺激值4.2.3 ⾊坐标计算4.2.4 均匀⾊度系统及⾊差4.3 液晶显⽰的颜⾊参数及计算4.3.1 颜⾊再现原理4.3.2 ⾊坐标和亮度计算4.3.3 灰阶与⾊深4.3.4 ⾊域计算4.3.5 ⾊温计算5 液晶光学设计基础5.1 概述5.1.1 液晶盒的主要参数5.1.2 常见的液晶显⽰模式5.2 透过率5.2.1 液晶光学偏振原理1.光的偏振性表⽰⽅法2.双折射及偏振光在双折射晶体中的传播5.2.2 不同显⽰模式的透过率1.TN模式2.IPS模式3.FFS模式4.VA模式5.3 对⽐度和视⾓5.3.1 对⽐度和视⾓的影响因素5.3.2 不同模式下的对⽐度和视⾓1.TN模式2.IPS模式3.FFS模式4.VA模式5.4 阈值电压和响应时间5.4.1 液晶电学和⼒学原理5.4.2 不同显⽰模式的阈值电压和响应时间5.5 ⼯作温度对液晶的影响5.6 液晶参数对显⽰影响概述6 驱动电路系统设计基础6.1 模组驱动电路系统6.1.1 OC的驱动电路6.1.2 LED背光源的驱动电路6.2 电源管理集成电路6.2.1 Buck 电路6.2.2 Boost 电路6.2.3 Buck-Boost 电路6.2.4 LDO 电路6.2.5 电荷泵电路6.2.6 VCOM电路6.2.7 多阶栅驱动电路6.3 时序控制器6.3.1 时序控制器概述6.3.2 接⼝信号特点6.3.3 LVDS接⼝6.3.4 eDP接⼝6.3.5 mini-LVDS接⼝6.3.6 Point to Point接⼝6.3.7 V-by-One接⼝6.4 数据驱动集成电路6.4.1 数据驱动集成电路概述6.4.2 双向移位寄存器6.4.3 数据缓冲器6.4.4 电平转换器6.4.5 数模转换器6.4.6 缓冲器和输出多路转换器6.4.7 预充电电路6.4.8 电荷分享电路6.5 扫描驱动集成电路6.5.1 扫描驱动集成电路概述6.5.2 扫描驱动集成电路时序6.5.3 XAO电路6.6 Gamma电路与调试6.6.1 Gamma电路6.6.2 Gamma数值计算6.6.3 Gamma电压调试6.7 ACC调试6.8 ODC调试6.9 电视整机电路驱动系统概述7 机构光学设计基础7.1 荧光灯光源7.2 发光⼆极管光源7.2.1 LED的基本特点7.2.2 LED的分类与光谱7.2.3 LED的I-V特性7.2.4 LED的辐射参数7.2.5 LED的光电特性1.电流与电压曲线2.LED电压挡3.LED⾊块7.3 光学膜材7.3.1 反射⽚7.3.2 导光板7.3.3 扩散板7.3.4 扩散⽚7.3.5 棱镜⽚7.3.6 反射型偏光增亮膜7.4 背光模组结构7.4.1 直下式背光结构7.4.2 侧光式背光结构7.5 机构部品材料特点7.5.1 ⾦属部品的特点7.5.2 ⾮⾦属部品的特点7.5.3 机构设计对散热的影响7.5.4 包装材料的特点7.6 能耗标准8 液晶显⽰器性能测试8.1 TFT电学性能测试8.1.1 TFT特性参数测试仪8.1.2 被测样品准备8.1.3 参数定义1.开态电流2.关态电流3.阈值电压4.迁移率8.1.4 TFT转移特性曲线测试8.1.5 TFT输出特性曲线测试8.1.6 TFT的光偏压应⼒测试8.1.7 TFT的热偏压应⼒测试8.1.8 TFT的电偏压应⼒测试8.2 显⽰器光学特性测试8.2.1 亮度及亮度均匀性测试8.2.2 对⽐度测试8.2.3 视⾓测试8.2.4 ⾊度学测试1.⾊域测试2.⾊偏测试3.⾊温测试8.3 响应时间测试8.3.1 灰阶响应时间测试8.3.2 动态响应时间测试8.4 闪烁测试8.4.1 JEITA测试法8.4.2 FMA测试法8.5 泛绿测试8.6 串扰测试8.7 残像测试8.8 VT曲线测试8.9 Gamma曲线测试9 阵列制造⼯程9.1 阵列制造⼯程概述9.2 溅射9.3 磁控溅射9.3.1 磁控溅射的特点9.3.2 ⼯艺条件对沉积薄膜的影响9.4 等离⼦体增强化学⽓相沉积9.4.1 薄膜沉积基本过程9.4.2 沉积SiNx薄膜9.4.3 沉积a-Si:H薄膜9.4.4 沉积n+a-Si:H薄膜9.5 光刻胶的涂布与显影⼯艺9.5.1 光刻胶材料特性9.5.2 光刻胶涂布⼯艺9.5.3 光刻胶显影⼯艺9.5.4 光刻胶剥离⼯艺9.6 ⼲法刻蚀⼯艺9.6.1 ⼲法刻蚀基本原理9.6.2 ⼲法刻蚀种类9.7 湿法刻蚀9.8 阵列不良的检测与修复9.8.1 检测与修复概述9.8.2 ⾃动光学检查9.8.3 断路/短路检查9.8.4 阵列综合检测9.8.5 阵列不良修复10 彩膜制造⼯程10.1 彩膜制造⼯程概述10.2 光刻胶的主要组分与作⽤10.2.1 颜料10.2.2 分散剂10.2.3 碱可溶性树脂10.2.4 感光树脂10.2.5 光引发剂10.2.6 有机溶剂10.2.7 其他添加剂10.3 彩膜制作⼯艺流程10.4 彩膜中各层薄膜的特性10.4.1 ⿊矩阵10.4.2 ⾊阻10.4.3 平坦化层10.4.4 透明导电薄膜10.4.5 柱状隔垫物10.5 彩膜制程各⼯艺特点10.5.1 清洗10.5.2 涂布⼯艺10.5.3 前烘⼯艺10.5.4 曝光⼯艺10.5.5 显影⼯艺10.5.6 后烘⼯艺10.6 不良的检测与修复10.6.1 不良的检测10.6.2 不良的修复10.7 再⼯⼯程10.8 材料测试与评价10.8.1 ⾊度和光学密度10.8.2 对⽐度10.8.3 ⾊阻的位相差10.8.4 黏度10.8.5 固含量10.8.6 溶剂再溶解性10.8.7 制版性10.8.8 电学特性10.8.9 表⾯特性测试11 液晶盒制造⼯程11.1 液晶盒制造⼯程概述11.2 取向层涂布⼯艺11.2.1 取向层材料特点11.2.2 凸版印刷⽅式11.2.3 喷墨印刷⽅式11.2.4 热固化11.3 取向技术11.3.1 取向机理11.3.2 摩擦取向11.3.3 光控取向1.偶氮类材料2.光交联类材料3.光降解类材料11.4 液晶滴注11.5 边框胶涂布11.6 真空对盒11.7 紫外固化和热固化11.8 切割和研磨11.9 液晶盒检测和修复1.液晶盒检测2.液晶盒的检测和维修过程11.10 清洗1.湿式清洗2.⼲式清洗12 模组制造⼯程12.1 模组制造⼯程概述12.2 偏光⽚贴附⼯艺12.2.1 偏光⽚贴附12.2.2 加压脱泡12.3 OLB⼯艺12.3.1 ACF材料特点12.3.2 COF邦定12.3.3 UV胶涂布12.4 回路调整12.5 模组组⽴附录A 薄膜晶体管的SPICE模型与参数提取A.1 概述A.2 数据获取A.2.1 ⼯艺参数的确定A.2.2 阈值电压的确定A.2.3 场效应迁移率的确定A.2.4 器件开关⽐的确定A.2.5 亚阈值斜率的确定A.3 模型参数的优化A.3.1 薄膜晶体管等效电路A.3.2 氢化⾮晶硅器件模型A.3.3 低温多晶硅器件模型A.4 模型参数提取A.4.1 提取⼯具简介A.4.2 模型参数提取实例1.氢化⾮晶硅器件模型参数提取2.低温多晶硅器件模型参数提取3.优化策略定义附录B ⾯板设计流程与验证⼯具B.1 设计流程概述B.1.1 设计数据管理⼯具B.1.2 电路原理图设计B.1.3 电路仿真B.1.4 版图设计B.2 版图验证B.2.1 DRC验证B.2.2 ERC验证B.2.3 LVS验证B.2.4 LVL验证思维导图防⽌博客图床图⽚失效,防⽌图⽚源站外链:)思维导图在线编辑链接:
发布者:admin,转转请注明出处:http://www.yc00.com/web/1689566953a266828.html
评论列表(0条)