2023年12月1日发(作者:今日油价最新)
4
9
9
1
c
e
D
1
1
2
v
9
1
0
2
1
4
9
/
c
q
-
r
:
g
v
i
X
r
a
SU-4240-590
December,1994
EdgeStatesinGravityandBlackHolePhysics
A.P.Balachandran,L.Chandar,ArshadMomen
DepartmentofPhysics,SyracuseUniversity,
Syracuse,NY13244-1130,U.S.A.
Abstract
WeshowinthecontextofEinsteingravitythattheremovalofaspatial
regionleadstotheappearanceofaninfinitesetofobservablesandtheir
associatededgestateslocalizedatitsboundary.Suchaboundaryoccursin
certainapproachestothephysicsofblackholesliketheonebasedonthe
membraneparadigm.Theedgestatescancontributetoblackholeentropy
inthesemodels.A“complementarityprinciple”isalsoshowntoemerge
wherebycertain“edge”observablesareaccessibleonlytocertainobservers.
Thephysicalsignificanceofedgeobservablesandtheirstatesisdiscussedusing
theirsimilaritiestothecorrespondingquantitiesinthequantumHalleffect.
Thecouplingoftheedgestatestothebulkgravitationalfieldisdemonstrated
inthecontextof(2+1)dimensionalgravity.
1
I.INTRODUCTION
SincethediscoveryofblackholeradiationbyHawking[1,2],theeventualfateofinfor-
mationfallingintoablackholehasremainedanunsolvedpuzzle.Thedifferentscenarios
thathavebeenproposedcanbesummarizedinthefollowingtwoclasses:
(1)Informationgoingintoablackholeisirretrievablylostsothatunitaryquantum
theorybreaksdown[3].
(2)Informationthatwasthoughttobe“lost”reappearsinsomeformthussaving
conventionalquantumphysics[4].
Quantumblackholephysicsisusuallystudiedinasemiclassicalapproximation.Typi-
callyitisshownthatprocesseslikeHawkingradiationandthescatteringofmatterfields
byblackholesaregovernedbyphysicsoccurringclosetotheeventhorizon[5].
Therehavebeenseveralinterestingproposals[5–7]totreattheblackholehorizonas
amembranewithdynamicaldegreesoffreedomattachedtoit.Itisfoundthatforany
externalstationaryobserver,theblackholecanbewellapproximatedbyhypothesizing
astretchedmembranehavingcertainclassicalproperties,surroundingtheholeatasmall
distanceoutsideitseventhorizon.Aphysicaljustificationforthisprocedureisthatparticles
classicallycanneverleavetheinterioroftheblackholeorreachitfromoutsideinafinite
timeaccordingtoanysuchobserver.Thusitseemsthatanysuchpersoncanstudythe
quantizationofthesystemafterremovingtheinterioroftheblackholeandreplacingitby
amembrane.Themanifoldinthisapproachthushasaboundary.
Inthispaper,westudythequantumphysicsofblackholesforsuchobservers,ormore
generallyfeaturesofquantumgravityonmanifoldswithspatialboundaries.Weshowthat
thepresenceoftheboundarynecessarilyleadstoaninfinitesetofobservableswhichare
completelylocalizedatthisboundaryintheabsenceofanomalies.[Theimportantissueof
anomaliesandtheirsignificanceisalsoaddressedinthispaper.]Theseareobtainedhere
inanalogyto“edge”observablesingaugetheoriesdefinedonmanifoldswithboundaries
[8,9].Suchobservables,definedinthecontextofgaugetheories,haveenjoyedgoodphysical
2
interpretationinmanyexamplesofcondensedmatterphysics.Forinstance,ithasbeen
knownforsometimethatmanyoftheessentialfeaturesofthefractionalquantumHall
effect(FQHE)arecapturedpurelybytheexistenceoftheseedgeobservables[10].We
willdiscussmoreaboutthisanalogywiththequantumHalleffect(QHE)lateroninthis
paper.Frompreviousworkdealingwiththeconstructionoftheseobservablesforpuregauge
theories[9]andalsofromtheconstructionexhibitedinthispaper,onerealizesthattheedge
observablesareindependentofobservablesdefinedinthebulkandthattheycommute
withtheHamiltonian.Thisisquiteinterestingbecauseitmeansthat,nomatterwhatthe
quantumtheoryofthebulkobservablesis,thereisalwaysaHilbertspacelivingentirelyon
theedge.Onecanthentalkofexcitationswhichonlyinvolvetheedgeandleavethebulk
unaffectedintheabsenceofanycouplingbetweenthem.
Hence,inspiteofthedeepproblemsinquantizinggravity,onecanstillexaminetherel-
ativelysimplertaskofquantizationofthegravitationaledgeobservablesandtheassociated
edgestatesattheboundary(which,forablackhole,isS×lR).Inthiswaywecanalso
2
hopetomakemeaningfulphysicalpredictionsbecauseoftheabovementionedclaimthat
thequantumaspectsofablackholearelinkedtotheexistenceofanimaginaryboundary
neartheeventhorizon.
Itmeritsemphasisthatthestretchedmembrane[6]istobethoughtofassurrounding
theblackholeatasmallbutfinitedistanceoutsideitseventhorizon.Forthisreason,
ourboundarywillalsoassumedtobesituatedslightlyawayfromtheactualeventhorizon.
Thereisalsoagoodtechnicalreasonforthisassumptionsincetheinducedmetricbecomes
degenerateontheeventhorizon.
Itisworthpointingoutoneotherimportantobservationemergingfromtheanalysisof
Section3.Wenoticethefactthateventhoughthereexistsaninfinitesetofobservables
attheedgeoftheblackhole,notallofthesearerelevantforalltheobservers.Infact,a
sortofcomplementarityprinciplecanbeshownaccordingtowhichtheexistenceofcertain
observablesas“good”observableswillprecludesomeothersfrombeingso.Thechoice
ofthe“good”observablesisdictatedbyphysicalconsiderations.Thus,forexample,we
3
shallseethatforanasymptoticobserver,physicswilldictatethatthereexistsaninfinite
sub-familyof“good”edgeobservableswhereasforanobserverstationedclosetotheevent
horizon,onlyafinitenumberoutofthisinfinitesetsurviveas“good”observables.This
differencebetweenthenotionof“good”observablesforthesetwoobserverscertainlyneeds
tobeunderstoodmorecarefullysincethismaybeattheheartofmanyoftheconceptual
difficultiesconcerningthequantumphysicsofblackholes.[Inthisconnection,see[5],where
adifferentkindofcomplementarityprinciplehasbeendiscussed.]
Theorganizationofthepaperisasfollows.InSection2,webrieflyreviewthecanonical
formulationofpuregravityin(3+1)dimensionsfortheconvenienceofthereader,follow-
ingtheapproachof[11]closely.InSection3,weusethisformalismin(3+1)dimensions
foramanifoldobtainedbyremovingaspatialball.Inblackholephysics,thisballmay
beregardedasenclosingtheholeincludingitseventhorizoninitsinterior,itsboundary
beingthemembrane.Weshowthat,insuchaspacetime,wearenaturallyledtocertain
observablesthatareconfinedpurelytotheedge.InSection4,wediscusstheanalogyof
theaforementionededgeobservableswithsimilarobservablesarisingincondensedmatter
physics,notablyintheQHE.Inparticular,wearguethateventhoughformallytheedge
observablesdonotmixwiththeotherobservableslivinginthebulk,thisceasestobethe
caseespeciallywhenwehaveananomalouscouplingbetweentheedgeandthebulk.Such
acouplingisnotamatterofchoice,itbeingrequiredfromverygeneralargumentsofgauge
invarianceinthecaseoftheQHE[10].Thesurpriseisthatthisanalogyextendsevento
thecaseofgravity,whereitturnsoutthatananomalouscouplingbetweentheedgeandthe
exteriorisforcedonusifwerequiregeneralcoordinateinvariance(diffeomorphisminvari-
ance).InSection5,weexplicitlydemonstratethatsuchacouplingindeedappearswhenwe
aredealingwith(2+1)gravity.ThefinalSection6outlinesanargumentsuggestingthatthe
edgeandbulkstatescouplein(3+1)dimensionsaswell.Thisargumentisunfortunately
incompleteaswelackasatisfactorydescriptionofedgedynamics.
4
II.CANONICALFORMULATIONOFTHEEINSTEIN-HILBERTACTION
Considerafour-manifoldMwhichistopologicallyΣ×lRandletitstime-slicesΣbe
t
parametrizedbyt.HereafterweassumethatΣisdiffeomorphictotheexteriorofaball
t
BinlR.Lettbethevectorfieldwhoseaffineparameteristandletndenotetheunit
3a
3
a
normaltothesurfacesΣinthedirectionofincreasingt.AmetricgonMinducesa
tab
metricqonΣ.SinceΣisthespatialsliceattimet,weneedqtohave+++signature.
abttab
Thenn,beingnormaltoΣ,willbetimelikeand(say)future-directed.Thuswehavethe
at
relation
q=g+nn.(2.1)
ababab
Itgives
gt=N+Γn,(2.2)
abaa
b
NbeingtangenttoΣ.HereΓandNarecommonlyreferredasthe‘lapse’functionand
aa
t
the‘shift’vectorfieldrespectively[11].
SincewewanttointerprettasthevectorfieldalongwhichthevariablesdefinedonΣ
a
t
evolve,ithastobetimelikeandfuture-directed.Thus
Γ−NN>0,
2a
a
Γ>0.(2.3)
Furthermore,sinceweareinterestedinasymptoticallyflatspacetimes,theappropriate
asymptoticconditionstoimposeonthelapseandshift,inorderthattreducestoatimelike
a
Killingvectorfieldnormaltothespatialsliceatspatialinfinity,are
Γ→1,N→0(2.4)
TheEinstein-Hilbertactionis
S=(−g)
发布者:admin,转转请注明出处:http://www.yc00.com/num/1701382020a1075483.html
评论列表(0条)