2024年4月21日发(作者:永久免费qq机器人手机版)
ICCD’96,InternationalConferenceonComputerDesign,October7–9,1996,Austin,Texas,USA
,
example,wecanusetheNewtonmethodon
toderivetheiterationequation
,where
isanapproximatevalueof
canbe
eginning,aseedobtainedbymultiplying
()isgeneratedbyhardwarecircuitry,aROMtablefor
iteration,multiplicationsandadditionsor
subtractionsareneeded.
Inordertospeedupthemultiplication,itisusualtouse
afastparallelmultipliertogetapartialproductionandthen
ethemultiplier
requiresaratherlargenumberofgatecounts,itisimpracti-
caltoplaceasmanymultipliersasrequiredtorealizefully
pipelinedoperationfordivision(div)andsquareroot(sqrt)
esignofmostcommercialRISCpro-
cessors,amultiplierisusedforalliterationsofdivorsqrt
ansthattheprocessorsarenotcapable
ofacceptinganewdivorsqrtinstructionforeachclock
cycle.
However,manyapplicationsrequireafastpipelined
purposeoffastvectornormal-
ization,lpresentedadesigntechniqueforpipelined
operationthatusessubtractorsandmultiplexors[2].
Inthispaper,wedescribeanewnon-restoringsquareroot
algorithmthatrequiresneithermultipliersnormultiplexors.
Comparedwithpreviousnon-restoringalgorithms,oural-
gorithmisveryeffi-
eratesthecorrectresultingvalueateachiterationanddoes
operationateachiterationissimple:additionorsubtraction
remainderoftheadditionorsubtractionisfedviaregisters
ast
iteration,iftheremainderisnon-negative,itisaprecisere-
ise,wecanobtainapreciseremainderby
anadditionoperation.
Thisalgorithmhasbeenimplementedinamultithreaded
processordesignwhichhasbeendevelopedatUniversity
ofAizuusingToshibaTC180C/E/TC183C/EGateArray
Library[7].Wealsoimplementedandverifiedthealgorithm
lementationsaresimple
andmorearea-timeefficientthanmanyexistingdesigns.
n2describes
n3
-
tion4and5introducetwoVLSIimplementationsforthe
538
fullypipelinedimplementationand
lowingsec-
tioninvestigatestheperformanceandcostcomparedwith
finalsectionpresents
conclusions.
D = 01,11,11,11
Q = 1000
D - Q x Q
+ 0100
Q = 1100
D - Q x Q
- 0010
Q = 1010D - Q x Q
+ 0001
Q = 1011D - Q x Q
=
00,11,11,11is nonnegtive
=
11,10,11,11is negtive
=
00,01,10,11is nonnegtive
=
00,00,01,10
usNon-RestoringSquareRootAlgo-
rithm
Assumethatanoperandisdenotedbya32-bitunsigned
number:.Thevalueofthe
operandis
.Foreverypairofbitsoftheoperand,the
integerpartofsquareroothasonebit(seeFig.1).Thusthe
integerpartofsquarerootfora32-bitoperandhas16bits:
.
pleofpreviousnon-
restoringsquarerootalgorithm
Non-RestoringSquareRootAlgo-
rithm
Thefocusofthepreviousrestoringandnon-restoringal-
gorithmsisoneachbitofthesquarerootwitheachiteration.
Inthissection,wedescribeanewnon-restoringsquareroot
usofthenewalgorithmisonthepar-
orithmgenerates
acorrectresultingbitineachiterationincludingthelast
rationduringeachiterationisverysim-
ple:additionorsubtractionbasedonthesignoftheresult
tialremaindergeneratedin
eachiterationisusedinthenextiterationevenitisnegative
(thisiswhatnon-restoringmeansinournewalgorithm).At
thefinaliteration,ifthepartialremainderisnotnegative,
itbecomesthefiise,wecan
getthefinalpreciseremainderbyanadditiontothepartial
remainder.
Thefollowingisthenewnon-restoringsquarerootalgo-
rithmwrittenintheClanguage.
OPERAND
SQUARE
ROOT
D
31
D
30
D
29
D
28
D
27
D
26
Q
15
Q
14
Q
13
...
...
D
1
Q
0
D
0
ofoperandandsquareroot
andtheniteratefromto
Atfirst,wereset
,andsubtract
iteration,weset
esultisnegative,thensettingmadetoo
big,sowereset
.Thisalgorithmmodifieseachbit
of
calledarestoringsquarerootalgorithm.
Animplementationexamplecanbefoundin[5].
Anon-restoringsquarerootalgorithmmodifieseachbit
nswithaninitialguess
of
(partialroot)and
iteration,istheniteratesfrom
subtractedbythesquaredpartialroot:.Based
onthesignoftheresult,thealgorithmaddsorsubtractsa1
8-bitexampleofthealgorithmisshown
in
entationexamplescanbefoundin[3]and
[4].
Wecanseethatthealgorithmhasfollowingdisad-
,itrequiresanaddition/subtraction(in-
crease/decrease)-
ond,thealgorithmmayproduceanerrorinthelastbitposi-
,itrequiresanoperationof
iterationwiththeresultnotbeingusedforthenextiteration.
canbereplacedbyAlthoughthemultiplicationof
substitutevariable,thecircuitryrequiredisstillcomplex.
539
发布者:admin,转转请注明出处:http://www.yc00.com/xitong/1713646352a2290390.html
评论列表(0条)