2024年3月30日发(作者:qq游戏大厅官方下载正式版电脑版)
Resources,ConservationandRecycling55 (2011) 1232–1251
ContentslistsavailableatScienceDirect
Resources,ConservationandRecycling
journalhomepage:/locate/resconrec
Review
SustainableoptionsofposttreatmentofUASBeffluenttreatingsewage:Areview
AbidAliKhan
a,∗
,RubiaZahidGaur
a
,
a
,AnwarKhursheed
a
,BeniLew
b
,
InduMehrotra
a
,
a
a
b
DepartmentofCivilEngineering,IITRoorkee,NH58,Uttrakhand247667,India
TheVolcaniCenter,InstituteofAgricultureEngineering,BetDagan50250,Israel
a
rticleinfo
abstract
Articlehistory:
Received19February2010
Receivedinrevisedform16May2011
Accepted17May2011
Keywords:
Highratemicro-aerobictreatmentsystems
NBMS
Postsettlingtreatmentstep
Polishing
methods
Sewage
UASB
posttreatment
Theupflowanaerobicsludgeblanket(UASB)processisreportedtobeasustainabletechnologyfordomes-
ticr,theinabilityof
UASBprocesstomeetthedesireddisposalstandardshasgivenenoughimpetusforsubsequentposttreat-
rtoupgradetheUASBbasedsewagetreatmentplants(STPs)toachievedesiredeffluent
quality
fordisposalorforreuse,varioustechnologicaloptionsareavailableandbroadlydifferentiated
as
primarypost-treatmentfortheremovaloforganicandinorganiccompoundsandsuspendedmatter;
secondarypost-treatmentfortheremovalofhardlydegradablesolublematter,colloidalandnutrients;
,thispaperdiscussesthedifferentsystemsfor
thetreatmentofUASBreactorefflonally,acomparativereview,aneconomic
evaluation
ofsomeoftheemergingoptionswasconductedandbasedontheextensivereviewofdifferent
integrated
combination,-differentaerobicsystems,atreatmentconceptbasedonnaturalbio-
logicalmineralizationrouterecognizedasanadvancedtechnologytomeetallpracticalaspectstomake
itasustainableforenvironmentalprotection,resourcepreservationandrecoveringmaximumresources.
© 2011 Elsevier B.V. All rights reserved.
Contents
1.
2.
1233
PosttreatmentoptionsofUASBreactor’seffl.1235
2.1.
Characteristicsofeffl1235
2.1.1.
1235
................................................................................................................................1235
dcompounds.
.................................................................................................................1235
2.1.4.
1236
1236
1236
1238
2.3.
Physicalandbiologicalmicro-aerobicmethods(includingremoval/orrecoveryofdissolvedgases)........................................1238
tebiologicalaerobicmethods(includingnitrification–denitrificationsteps).........................................................1239
eprimaryposttreatmentsystems(includingvalorization/orremovalofnutrients).................................................1242
1244
1245
1246
1246
Conclusions.
............................................................................................................................................1249
References.
.............................................................................................................................................1249
3.
4.
∗
Correspondingauthor.
E-mailaddresses:abidkdce@,@().
0921-3449/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/rec.2011.05.017
al./Resources,ConservationandRecycling55 (2011) 1232–12511233
uction
Anaerobictreatmentofdomesticwastewaterisnotanewcon-
ceptandfromtimeimmemorialseptictanks,soakpits,cesspool,
hesesystemscanonlypartiallytreatthe
sewageand,theeffluentstillcontainshighconcentrationoforganic
matter,suspendedsolidsandnutrients,theinterestforsewage
re
numerousaerobictreatmentsystemssomeofwhichinclude,acti-
vatedsludgeprocess(ASP),fluidizedbedreactors(FBR),trickling
filter(TF),lessofthe
goodtreatmentperformanceandlowlandrequirementofaerobic
systems;thesemethodssufferfromplentifuldrawbacksascom-
paredtoanaerobictreatmentsystems(alsosummarizedinTable1)
(Lettinga,2008):
•
Energyintensive;
•
Productionofhighandpoorlystabilizedsludge(60–70%of
incomingCODisconvertedtobiomass);
•
Highinvestmentandoperational/maintenancecost;
•
Complex
infrastructure.
Though,mostoftheabovementioneddrawbacksarenotasso-
ciatedwithoxidationpondsbuthighlandareaisneededwhich
isveryuneconomicalindenselypopulatedcountrieslikeIndia.
Therefore,thesementioneddrawbacksmaketheanaerobicsys-
tems
suitableforruralareasanddevelopingcountries.
Withtheadventofhighrateanaerobicsystemssuchasup-flow
anaerobicsludgeblanketreactor(UASB),anaerobiccontactprocess,
anaerobicfilter(AF)orfixedfilmreactorsandfluidizedbedreac-
tors,whichpromoteagoodcontactbetweentheinflowwastewater
andthemicro-organismsathighconcentrationandconsequently
highorganicmatterremovalatshortretentiontimes,thestrategy
forthetreatmentofsewagewasshiftedbacktoanaerobicprocess
whichhastheadvantagesoflowcost,energyrecoveryintheform
ofbiogas,operationalsimplicity,lowenergyconsumption,andlow
1970s,duetotheenergycrisisand
relativelylessexpensivetreatmentconcept,theUASBprocesswas
recognizedasoneofthemostfeasiblemethodforthetreatmentof
sewageindevelopingtropicalandsub-tropicalcountrieslikeIndia,
BrazilandColombiawherefinancialresourcesaregenerallyscarce.
Since1980,thediscussionontheapplicabilityofUASBpro-
cessforthetreatmentofsewagehasbeenpresentedbyLettinga
andco-researchers(Lettingaetal.,1980,1981,1993;Lettinga
and
HulshoffPol,1986;Seghezzoetal.,2002;vonSperlingand
Chernicharo,2005;Lettinga,2008)andtheresultsindicatedthat
about70%chemicaloxygendemand(COD)removalcanbeachieved
inwarmclimatescountries(Schellinkhoutetal.,1985;Souza,1986;
Siddiqi,1990;Khan,2011).Presentlyabout30UASBbasedSTPs
wereinstalledinIndiasincelate1980sandmorethan20areunder
construction(MoEF,2005and2006).
Therefore,singlestepUASBprocessundoubtedlyexperienced
r,the
treatmentefficiencydecreaseswiththedecreaseintemperature,
reachinga50%CODremovalat15
◦
C(Elmitwallietal.,2001;
SinghandViraraghavan,2002;Lewetal.,2003).TheUASBreactor
performanceatlowtemperaturescanbeimprovedbychang-
ingitsconfigurationlikeincorporatingsettlerabovetheGLSS
(gas–liquid–solidseparator),oraddingtheAFatthetopofthe
UASBreactor,makingitasahighrateanaerobichybridreactorand
extended(staged)typesofUASB-systems,-reactorscom-
pletedwithanAForsupplementedwithadditionalsludgedigester
operatedatoptimaltemperatureforstabilizingsludge‘extracted’
fromtheUASBreactor,whichfollowingitsstabilizationinthe
digesterpartiallywillbereturntotheUASBreactorinorderto
keepthemethanogenicactivityatasuffi-
formance
ofUASB-Digestersystemfororganicmatterremovalwas
observedsubstantiallybetterattemperatureof15
◦
Cascompared
tosinglestepUASBreactoratlowtemperature(Mahmoud,2002).
Thetwo-stepUASBsystemwasstudiedbyvariousauthors(Sayed
andFergala,1995;Halalsheh,2002;Seghezzo,2004).However,
resultsshowedsimilarperformanceofthetwo-stepreactorincom-
parisontoaone-stepsystem,duetolowerremovalefficienciesin
thesecondstage,whichwasattributedtolowsludgeretentiontime
(SRT).TypicalproblemsofhighlyloadedUASBreactorslikesludge
flotationandwashoutofactivebiomasswereobserved,mainlyat
temperaturesbelow20
◦
(1994)evaluatedatwostagesys-
temcomposedofUASB-EGSB(expandedgranularsludgebed)for
maryobjectiveofthe
first-steptreatmentwastheremovalandpartialhydrolysisofsus-
pendedCODandthesecond-stepprocessobservedtoconvertthe
dissolvedCODtoenergyrichmethanegas.
ChernicharoandMachado(1998)studiedpilotscalesystem
composedofthreeunitsviz.;416LUASBreactoroperatedat6h
and4hhydraulicretentiontime(HRT)followedbytwoanaero-
bicfiltersinupflowanddownfl
anaerobicfiltershadatotalcapacityof102L(32Lofpackingmate-
rial),operatedatHRTvaryingfrom24to1.5h(upflowvelocities
variedfrom0.06to1.44m/h).Theselectionofupwardanddown-
flowmodeofAFsoperationwastoidentifytheextentofremoval
oforganicmatterduetophysicalmechanismsofsedimentation
andfiltrationthatarepredominantinupwardmodeorbiochemi-
nflowmode
wasmeanttoinduceattachedgrowthasabiofilmthatfavoursthe
Breactorperformedwellalmost
achievingabove80%ultsdepictedthat
theAFsadditionallypromotedtheremovalwhichimprovedthe
overallefficiencyofthesystemwithintheambitofonlyanaero-
rallCODandbiologicaloxygendemand(BOD)
removalvariedfrom85to95%andtheconcentrationoffinalefflu-
entCODrangedfrom60to90mg/LandtheBODandSSvalueswere
lessthan40and25mg/L,r,theauthorssug-
gestedthatUASB-AFsystemcouldbeanoptionforthetreatmentof
domesticsewageindevelopingcountries,sincethesystemcould
beoperatedatanHRTof6hforUASBand3–4
hforAFresulting
inverycompactandlowcosttreatmentbesidesthistherewasno
energyconsumption.
Similarly,Elmitwallietal.(1999)andLewetal.(2004)com-
paredtheperformancesofahybridUASB-filterandaclassicalUASB
reactorforthetreatmentofdomesticwastewateratdifferentoper-
ational
temperatures(28,20,14and10
◦
C)
eachtemperaturestudiedaconstantCODremovalwasobserved
aslongastheupflowvelocitywaslowerthan0.35m/hinboth
r,atlowertemperatureof14and10
◦
CtheUASB
reactorshowedabetterCODandTSSremovalthanthehybridreac-
tor.
AgainElmitwallietal.(2003)studiedacompositesystemof
twostepanaerobicsystemfollowedbyaerobicsystemconsist-
ingofanaerobicfilter,anaerobichybridreactorandtricklingfilter
(AF+AH+TF)ratingconditionssuchas
HRTandtemperatureweremoreorlesssimilartoothertwostep
atmentperformanceoftwostepanaerobicsystem
(AF+AH)wasimprovedfrom63%to85%
treatedeffluentofthisstagedsystemcanbereusedforrestricted
irrigationandnutrientcanberecycled.
Mahmoudetal.(2004)investigatedacombinedUASB-CSTR
(completelystirredtankreactor)digestersystem,wheretheaccu-
mulatedsludgefromtheUASBreactorwasthendirectedtoa
CSTR-digester,operatingat35
◦
s
showedthattheUASB-CSTRdigesterhadabetterperformancethan
asinglestageUASBreactorat15
◦
ovalefficienciesfor
total,suspended,colloidalanddissolvedCODwere72,74,74and
发布者:admin,转转请注明出处:http://www.yc00.com/xitong/1711750300a1949197.html
评论列表(0条)