2024年3月10日发(作者:chrome手机版官网)
Intelligence without representation*
Rodney A. Brooks
MIT Artificial Intelligence Laboratory, 545 Technology Square, Rm. 836, Cambridge, MA 02139, USA
Received September 1987
Brooks, R.A., Intelligence without representation, Artificial Intelligence 47 (1991), 139–159.
* This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the
research is provided in part by an IBM Faculty 9 Development Award, in part by a grant from the Systems Development Foundation, in part by
the University Research Initiative under Office of Naval Research contract N00014-86-K-0685 and in part by the Advanced Research
Projects Agency under Office of Naval Research contract N00014-85-K-0124.
Abstract
Artificial intelligence research has foundered on the issue of representation. When intelligence is approached in an incremental manner, with
strict reliance on interfacing to the real world through perception and action, reliance on representation disappears. In this paper we outline
our approach to incrementally building complete intelligent Creatures. The fundamental decomposition of the intelligent system is not into
independent information processing units which must interface with each other via representations. Instead, the intelligent system is
decomposed into independent and parallel activity producers which all interface directly to the world through perception and action, rather
than interface to each other particularly much. The notions of central and peripheral systems evaporateeverything is both central and
peripheral. Based on these principles we have built a very successful series of mobile robots which operate without supervision as Creatures in
standard office environments.
1. Introduction
Artificial intelligence started as a field whose goal
was to replicate human level intelligence in a
machine.
Early hopes diminished as the magnitude and
difficulty of that goal was appreciated. Slow progress
was made over the next 25 years in demonstrating
isolated aspects of intelligence. Recent work has
tended to concentrate on commercializable aspects of
"intelligent assistants" for human workers.
No one talks about replicating the full gamut of
human intelligence any more. Instead we see a retreat
into specialized subproblems, such as ways to
represent knowledge, natural language understanding,
vision or even more specialized areas such as truth
maintenance systems or plan verification. All the
work
in
these subareas is benchmarked against the
sorts of tasks humans do within those areas.
Amongst the dreamers still in the field of AI (those
not dreaming about dollars, that is), there is a feeling.
that one day all these pieces will all fall into place
and we will see "truly" intelligent systems emerge.
However, I, and others, believe that human level
intelligence is too complex and little understood to be
correctly decomposed into the right subpieces at the
moment and that even if we knew the subpieces we
still wouldn't know the right interfaces between
them. Furthermore, we will never understand how to
decompose human level intelligence until we've had a
lot of practice with simpler level intelligences.
In this paper I therefore argue for a different
approach to creating artificial intelligence:
• We must incrementally build up the capabilities of
intelligent systems, having complete systems at
each step of the way and thus automatically ensure
that the pieces and their interfaces are valid.
• At each step we should build complete intelligent
systems that we let loose in the real world with real
sensing and real action. Anything less provides a
candidate with which we can delude ourselves.
We have been following this approach and have built
a series of autonomous mobile robots. We have
reached an unexpected conclusion (C) and have a
rather radical hypothesis (H).
(C)When we examine very simple level intelligence
we find that explicit representations and models
of the world simply get in the way. It turns out
to be better to use the world as its own model.
(H)Representation is the wrong unit of abstraction
in building the bulkiest parts of intelligent
systems.
Representation has been the central issue in artificial
intelligence work over the last 15 years only because
it has provided an interface between otherwise isolated
modules and conference papers.
2. The evolution of intelligence
We already have an existence proof of, the
possibility of intelligent entities: human beings.
Additionally, many animals are intelligent to some
degree. (This is a subject of intense debate, much of
which really centers around a definition of
intelligence.) They have evolved over the 4.6 billion
year history of the earth.
It is instructive to reflect on the way in which
earth-based biological evolution spent its time.
Single-cell entities arose out of the primordial soup
roughly 3.5 billion years ago. A billion years passed
before photosynthetic plants appeared. After almost
another billion and a half years, around 550 million
years ago, the first fish and Vertebrates arrived, and
then insects 450 million years ago. Then things
started moving fast. Reptiles arrived 370 million
years ago, followed by dinosaurs at 330 and
mammals at 250 million years ago. The first
primates appeared 120 million years ago and the
immediate predecessors to the great apes a mere 18
million years ago. Man arrived in roughly his present
form 2.5 million years ago. He invented agriculture a
mere 10,000 years ago, writing less than 5000 years
ago and "expert" knowledge only over the last few
hundred years,
This suggests that problem solving behavior,
language, expert knowledge and application, and
reason, are all pretty simple once the essence of being
and reacting are available. That essence is the ability
to move around in a dynamic environment, sensing
the surroundings to a degree sufficient to achieve the
necessary maintenance of life and reproduction. This
part of intelligence is where evolution has
concentrated its time—it is much harder.
I believe that mobility, acute vision and the ability
to carry out survivalrelated tasks in a dynamic
environment provide a necessary basis for the
development of true intelligence. Moravec [11] argues
this same case rather eloquently.
Human level intelligence has provided us with an
existence proof but we must be careful about what
the lessons are to be gained from it.
2. 1. A story
Suppose it is the 1890s. Artificial flight is the
glamor subject in science, engineering, and venture
capital circles. A bunch of AF researchers are
miraculously transported by a time machine to the
1980s for a few hours. They spend the whole time in
the passenger cabin of a commercial passenger
Boeing 747 on a medium duration flight.
Returned to the 1890s they feel vigorated, knowing
that AF is possible on a grand scale. They
immediately set to work duplicating what they have
seen. They make great progress in designing pitched
seats, double pane windows, and know that if only
they can figure out those weird "plastics" they will
have their grail within their grasp. (A few
connectionists amongst them caught a glimpse of an
engine with its cover off and they are preoccupied
with inspirations from that experience.)
3. Abstraction as a dangerous weapon
Artificial intelligence researchers are fond of pointing
out that AI is often denied its rightful successes. The
popular story goes that when nobody has any good
idea of how to solve a particular sort of problem (e.g.
playing chess) it is known as an AI problem. When
an algorithm developed by AI researchers successfully
tackles such a problem, however, AI detractors claim
that since the problem was solvable by an algorithm,
it wasn't really an AI problem after all. Thus AI
never has any successes. But have you ever heard of
an AI failure?
I claim that AI researchers are guilty of the same
(self) deception. They partition the problems they
work on into two components. The AI component,
which they solve, and the non-AI component which,
they don't solve. Typically, AI "succeeds" by defining
the parts of the problem that are unsolved as not AI.
The principal mechanism for this partitioning is
abstraction. Its application is usually considered part
of good science, not, as it is in fact used in AI, as a
mechanism for self-delusion. In AI, abstraction is
usually used to factor out all aspects of perception
and motor skills. I argue below that these are the hard
problems solved by intelligent systems, and further
that the shape of solutions to these problems
constrains greatly the correct solutions of the small
pieces of intelligence which remain.
Early work in AI concentrated on games,
geometrical problems, symbolic algebra, theorem
proving, and other formal systems (e.g. [6, 9]). In
each case the semantics of the domains were fairly
simple.
In the late sixties and early seventies the blocks
world became a popular domain for AI research. It had
a uniform and simple semantics. The key to success
was to represent the state of the world completely and
explicitly. Search techniques could then be used for
planning within this well-understood world. Learning
could also be done within the blocks world; there
were only a few simple concepts worth learning and
they could be captured by enumerating the set of
subexpressions which must be contained in any
formal description of a world including an instance of
the concept. The blocks world was even used for
vision research and mobile robotics, as it provided
strong constraints on the perceptual processing
necessary [12].
发布者:admin,转转请注明出处:http://www.yc00.com/xitong/1710013614a1686121.html
评论列表(0条)