2024年5月20日发(作者:)
`PyTorch`是一个使用 GPU 和 CPU 进行深度学习的优化张量库,在 Python 中可以使
用`PyTorch`实现鸢尾花数据集的分类任务,执行代码前请确保已经安装了`torch`库与
`pandas`库。以下是一个 Python 的`PyTorch`小项目示例代码:
```python
import torch
import pandas as pd
from _selection import train_test_split
from cessing import OneHotEncoder
from import DataLoader, TensorDataset
from torch import nn, optim
def get_data():
# 读取数据集
data = _csv("", header=None)
# 特征列
X = [:, :4]
# 目标列
y = [:, 4:]
X = e(-1, 4)
y = e(-1, 1)
encoder = OneHotEncoder(sparse=False)
y_encoded = _transform(e(-1, 1))
X_train, X_test, y_train, y_test = train_test_split(X,
test_size=0.2, random_state=42)
return X_train, X_test, y_train, y_test
y_encoded,
def train(X_train, y_train):
# 定义模型
model = tial(
(4, 10),
(),
(10, 3)
)
# 定义损失函数和优化器
criterion = ntropyLoss()
optimizer = (ters(), lr=0.01)
# 训练模型
num_epochs = 50
for epoch in range(num_epochs):
train_loss = 0
for batch in DataLoader(X_train, batch_size=16):
input, target = batch
output = model(input)
loss = criterion(output, target)
train_loss += ()
_grad()
rd()
()
if (epoch + 1) % 10 == 0:
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss:
len(X_train)}")
/ {train_loss
return model
def evaluate(model, X_test, y_test):
with _grad():
test_loss, correct = 0, 0
for batch in DataLoader(X_test, batch_size=16):
input, target = batch
output = model(input)
test_loss += criterion(output, target).item()
predicted = (output, dim=1)
correct += (predicted == target).type().sum().item()
test_loss /= len(X_test)
accuracy = correct / len(X_test)
print(f"Test Loss: {test_loss:.4f}, Test Accuracy: {accuracy:.4f}")
def run():
X_train, X_test, y_train, y_test = get_data()
model = train(X_train, y_train)
evaluate(model, X_test, y_test)
if __name__ == "__main__":
run()
```
在上述代码中,定义了`get_data`、`train`、`evaluate`和`run`四个函数来完成鸢尾
花数据集的分类任务:
- `get_data`函数用于加载鸢尾花数据集,并将标签进行独热编码。
- `train`函数定义了模型结构、损失函数和优化器,并使用训练集进行训练。
- `evaluate`函数使用测试集对训练好的模型进行评估。
- `run`函数调用了`get_data`、`train`和`evaluate`函数来完成整个训练和评估过
程。
你可以根据实际情况修改数据集的路径以及模型的结构和参数等,希望这段代码能够帮
助到你。
发布者:admin,转转请注明出处:http://www.yc00.com/web/1716210989a2726708.html
评论列表(0条)