2024年5月2日发(作者:)
鸡兔同笼解题方法有几种
“鸡兔同笼”的应用题,相信大人孩子都不陌生。“鸡兔同
笼”是历年数学考试都会出现的考题(可以说是必考题)。很
多孩子都是这题当中,失分比较严重。
其实鸡兔笼的问题虽然复杂,但是解决的方法不止一种。今天
我们用一个例子来学习鸡兔同笼问题的13种解决方法!
题目:有一个笼子,里面有鸡和兔子。数一数。有14个头和
38条腿。有多少只鸡和兔子?(请用尽可能多的方式回答)
『 方法一:人见人爱的列表法 』
如果二年级小朋友做这道题,可以用列表法!直观、易理解,
还不容易出错~好啦,我们来看一下!
鸡
0
3
5
7
9
...
兔
14
11
9
7
5
...
腿
56
50
46
42
38
...
根据上表,我们可以看到有9只鸡和5只兔子。我们列的时
候不要按顺序列,不然做题的速度会很慢。例如,在列出0只
鸡和14只兔子后,我们发现腿的数量是56,与实际的38相
差很大。那么,下次可以跳过鸡数为2的情况,直接列出3只
鸡,这样速度会更快!
『 方法二:最快乐的画图法 』
画画可以让数学变得生动,经常画画有助于培养创造力!假
设14只鸡都是鸡。先画小鸡。
14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔
子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9
只鸡。
『 方法三:最酷的金鸡独立法 』
分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立
着,那么地上的总脚数只是原来的一半,即19只脚。鸡的脚
数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里
减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-
5=9只。
『 方法四:最逗的吹哨法 』
分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起
一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬
起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,
所以兔子有10÷2=5只,鸡有14-5=9只。(惊现跑男中包贝
尔的抬脚法有木有!)
『 方法五:最常用的假设法 』
分析:假设全部是鸡,则有14×2=28条腿,比实际少38-
28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所
以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
『 方法六:最常用的假设法 』
分析:假设全部是兔子,则有14×4=56条腿,比实际多56-
38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所
以需要9只兔子变成鸡,即鸡为9只,兔子为14 - 9=5只。
『 方法七:最牛的特异功能法 』
分析:鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2
只翅膀,兔子却没有。假设鸡有特级功能,把两只翅膀变成2
条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但
实际上只有38条,为什么呢?因为我们把鸡的翅膀当作腿来
算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就
是14-9=5只。
『 方法八:最牛的特异功能法2 』
分析:假设每只鸡兔都具有“ 特异功能 ”,鸡飞起来,兔立
起来,这时立在地上的脚全是兔的,它的脚数就是38-
14×2=10条,因此兔的只数有10÷2=5只,进而知道鸡有14-
5=9只。鸡兔具有“特异功能”,这个方法想得太棒了!
『 方法九:最牛的特异功能法3 』
假设孙悟空变成兔子,说“变”,每只兔子又长出一个头来,
然后对妖精说“将它劈开”,变成“一头两脚”的两只“半
兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19
-14=5只,这就是兔子的数目,当然鸡就有14-5=9只。呵
呵,小朋友把兔“劈开”成“半兔”,想得奇吧!
『 方法十:最古老的砍足法 』
分析:假如把每只砍掉1只脚、每只兔砍掉2只脚,则每只鸡
就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,鸡
和兔的脚的总数就由38只变成了19只;如果笼子里有一只兔
子,则脚的总数就比头的总数多1。因此,脚的总数19与总
头数14的差,就是兔子的只数,即19-14=5(只)。所
以,鸡的只数就是14-5=9(只)了。呵呵,这个方法是古
人想出来的,但有点残忍!
『 方法十一:史上最坑的耍兔法 』
分析:假如刘老师喊口令:“兔子,耍酷!”此时兔子们都把
两只前脚高高抬起,两只后脚着地,呈酷酷的姿态,此时鸡兔
都是两只脚着地。在地上脚的总数是14×2=28只,而原来有
38只脚,多出38-28=10只。为什么会多呢?因为兔子们把
它们的2只前脚抬了起来,所以兔的只数是10÷2=5只,鸡
则是14-5=9只。
『 方法十二:最万能的方程法 』
分析:设鸡的数量为x只,则兔子有(14-x)只,有2x+4
(14-x)=38,解出x=9,所以有鸡9只,兔子14-9=5只。
『 方法十三:最万能的方程法 』
分析:设兔子的数量为x只,则鸡有(14-x)只,有4x+2
(14-x)=38.解得x=5,所以兔子有5只,鸡有14-5=9只。
把兔子关在笼子里的13种方法将为你完成。最后,我们总结
一下!
• 十三种方法 •
1、列表法 2、画图法
3、金鸡独立法 4、吹哨法
5、假设法 6、假设法
7、特异功能法 8、特异功能法
9、特异功能法 10、砍足法
11、耍兔法 12、方程法
13、方程法
记忆方法:假设“列表”同学画完图以后,有了3大特异功
能,摆了一个金鸡独立的pose,吹了一声哨,耍了一下兔,
看足了,于是“方程”去了!
发布者:admin,转转请注明出处:http://www.yc00.com/web/1714605969a2479154.html
评论列表(0条)