数据的计量尺度有哪些

数据的计量尺度有哪些


2024年4月18日发(作者:)

数据的计量尺度有哪些

1、数据的计量尺度有哪些?各自特征

(1)定类尺度:计量层次最低;对事物进行平行的分类;各类别可以指定数字代码表示;使用时必须符

合类别穷尽与互斥的要求;数据表现为“类别”;具有=或的数学特性

(2)定序尺度:对事物分类的同时给出各类别的顺序;比定类尺度精确;未测量出类别之间的准确差

值;数据表现为“类别”,但有序;具有>或<的数学特性(例如,产品分为一等品、二等品、三等品、

次品等)

(3)定距尺度:对事物的准确测度;比定序尺度精确;数据表现为“数值”;没有绝对零点;具有 + 或

— 的数学特性,但就是倍数关系不成立(如气温可以有温差,但不能有倍数关系)

(4)定比尺度:对事物的准确测度;与定距尺度处于同一层次;数据表现为“数值”;有绝对零点;具有

 或  的数学特性,也可+或— ,倍数关系成立(如年龄可以有差值也可以有倍数关系)

&以上四种计量尺度对事物的测量层次由低级到高级、由粗略到精确逐步地进,高层次计量尺度有

低层次计量尺度的全部特征,反之不成立。

·对测量尺度层次的判断

(1)较低层次的测量尺度测量精度低,而较高层次的测量尺度测量精度高。

(2)较低层次的测量尺度计算方法少,而较高层次的测量尺度计算方法多。

(3)较低层次的测量尺度信息数量少,而较高层次的测量尺度信息数量多。

2、条形图与直方图的不同

(1)直方图表示定量数据(定距、定比数据),条形图表示定性数据(定类、定序数据)

(2)条形图就是用条形的长度表示各类别频数的多少,其宽度就是固定的;直方图就是用面积表示

各组频数的多少,矩形的高度表示每一组的频数或百分比,宽度则表示各组的组距,高度与宽度均

有意义

(3)直方图的各矩形通常就是连续排列,条形图则就是分开排列

3、均值、中位数与众数的特点及之间的关系

(1)众数:不受极端值影响、具有不惟一性、数据分布偏斜程度较大时应用

(2)中位数:不受极端值影响、数据分布偏斜程度较大时应用

(3)均值:易受极端值影响、数学性质优良、数据对称分布或接近对称分布时应用

·当分布为适度偏态时,三者之间近似的数量关系就是:众数与算术平均数的距离就是中位数与算

术平均数距离的3倍,即:

XM

0

3XM

e

根据这一关系,可以得到以下三个关系式:

4、为什么要计算离散系数?如何运用离散系数判断平均数的代表性?

M

0

X3

XM

e

3M

e

2X

M

e

3M

e

M

0

M

0

2X

X

3

2

(1)离散系数:标准差与其相应的均值之比,就是对数据相对离散程度的测度,消除了数据水平高低

与计量单位的影响,用于对不同组别数据离散程度的比较,用V表示。公式如下:

(2)离散系数大的离散程度大,平均数代表性小;反之,离散系数小的离散程度小,平均数代表性大。

5、什么就是参数?什么就是统计量?二者有何关系?

(1)参数:研究者想要了解的总体的某种特征值。总体参数通常用希腊字母表示,所关心的参数主要

有总体均值()、标准差()、总体比例(π)等。

(2)统计量:根据样本数据计算出来的一个量。样本统计量通常用小写英文字母来表示,所关心的样

本统计量有样本均值(x)、样本标准差(s)、样本比例(p)等

数据的计量尺度有哪些

(3)关系:

6、评价估计量优良的标准就是什么?

(1)无偏性:估计量抽样分布的数学期望等于被估计的总体参数。若

估计量。

(2)有效性:作为优良的估计量,除了满足无偏性的要求外,其方差应比较小。假定 、 为总体参数

的两个无偏估计量,其抽样分布的方差分别用 与 表示,若,则称为比更

,则称为的无偏

有效的估计量。在无偏估计条件下,估计量方差越小,离散程度越小,估计越有效。

(3)一致性:指随着样本单位数n的增大,样本估计量将在概率意义下越来越接近于总体真实值。若

n越大越小,则称为的一致估计量。

7、什么就是假设检验中的两类错误?第一类错误与第二类错误分别指什么?它们发生的概率大

小之间存在怎样的关系?

(1)第一类错误(弃真错误):原假设正确却拒绝了原假设。第Ⅰ类错误的概率记为

,被称为显著性水平。

(2)第二类错误(存为错误):原假设为假时未拒绝原假设。第Ⅱ类错误的概率记为 。

(3)关系:在样本量不变的情况下, 越小,犯第一类错误的可能性越小,但 就大,犯第二类错误的可

能性越大;反之, 越大,犯第一类错误的可能性越大, ,但 就小,饭第二类错误的可能性越小。不能

同时减少两类错误,要使二者同时减小的唯一办法就就是增加样本量。

8、另加:什么就是小概率事件原理?

(1)在一次试验中,一个几乎不可能发生的事件发生的概率

(2)在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设

(3)小概率由研究者事先确定

9、什么就是方差分析,它研究的就是什么?

(1)方差分析就就是从数据差异入手,通过检验多个总体均值就是否相等来判断分类型自变量对

数值型因变量就是否有显著影响的统计方法。

(2)方差分析从形式上瞧就是比较多个总体的均值就是否相等,但本质上研究的就是变量之间的

关系,包括她们之间有没有影响关系,关系的强度如何等。

10、方差分析中有哪些基本假定

⑴每个总体均服从正态分布。即有:x~N(u,σ2) 对于每个因素中的每一个水平,其观测值就是来自

正态分布总体的简单随机样本。

⑵每个总体的方差都相同。即:σ21=σ22=……=σn2 各组观测数据就是从具有相同方差的正

态分布总体中抽取的。

⑶各水平下的观测值相互独立。

11、简述方差分析的基本思想

⑴比较两类误差,以检验均值就是否相等

⑵比较的基础就是方差比

⑶如果系统(处理)误差明显地不同于随机误差,则均值就不相等;反之,均值相等

⑷误差就是由各部分的误差占总误差的比例来测度的

12、简述方差分析的基本步骤

(一)提出假设

一般提法

数据的计量尺度有哪些

H0 : m1 = m2 =…= mk 自变量对因变量没有显著影响

H1 : m1 ,m2 ,… ,mk不全相等 自变量对因变量有显著影响

注意:拒绝原假设,只表明至少有两个总体的均值不相等,并不意味着所有的均值都不相等

(二)构造检验的统计量

1、 计算各水平的均值

(1)假定从第i个总体中抽取一个容量为ni的简单随机样本,第i个总体的样本均值为该样本的全

部观察值总与除以观察值的个数

(2)计算公式为式中:

x

x

n

2、 计算全部观察值的总均值

ni为第 i 个总体的样本观察值个数

xij 为第 i 个总体的第 j 个观察值

(1)全部观察值的总与除以观察值的总个数



x

x

(2)计算公式为:

i1j1

k

n

i

ij

nn

式中:nn

1

n

2

n

k

k

n

i

nx

i1

k

ii

3、 计算误差平方与

(1)总误差平方与

SST



x

ij

x

i1j1

k

n

i

2

2

k

2

(2)水平项误差平方与

SSA



x

i

x

n

i

x

i

x

i1j1i1

k

n

i

2

3)误差平方与

SSE



x

ij

x

i

i1j1

(4)三个平方与的关系SST=SSA+SSE

(5)三个平方与的作用

① SST反映全部数据总的误差程度;SSE反映随机误差的大小;SSA反映随机误差与系统误差的大

② 如果原假设成立,则表明没有系统误差,组间平方与SSA除以自由度后的均方与组内平方与SSE

与除以自由度后的均方差异就不会太大;如果组间均方显著地大于组内均方,说明各水平(总体)之

间的差异不仅有随机误差,还有系统误差

③ 判断因素的水平就是否对其观察值有影响,实际上就就是比较组间方差与组内方差之间差异

的大小

4、 计算统计量

(1)计算均方差(MS)

MSA

④组间均方差:SSA的均方差,记为MSA,

SSA

k1

SSE

nk

MSE

⑤组内均方差:SSE的均方差,记为MSE,

数据的计量尺度有哪些

F

MSA

~F(k1,nk)

MSE

2)计算检验统计量F

(三)统计决策

 将统计量的值F与给定的显著性水平的临界值F进行比较,作出对原假设H0的决策

根据给定的显著性水平,在F分布表中查找与第一自由度df1=k-1、第二自由度df2=n-k 相应

的临界值 F

若F>F ,则拒绝原假设H0 ,表明均值之间的差异就是显著的,所检验的因素对观察值有显著影响

若F

13、一元线性回归模型中有哪些假定?

14、相关分析与回归分析的联系

(1)、共同的研究对象:都就是对变量间相关关系的分析

(2)只有当变量间存在相关关系时,用回归分析去寻求相关的具体数学形式才有实际意义

(3)、相关分析只表明变量间相关关系的性质与程度,要确定变量间相关的具体数学形式依赖于回

归分析

(4)、相关分析中相关系数的确定建立在回归分析的基础上

15、时期数列与时点数列的区别有哪些?

(1)当绝对数时间序列中的数据反映的就是现象在所属时期内发展过程的总量时,就称为时期序

列。其特点:1>序列中不同时间的数据具有可加性。2>序列中每个数据的大小与其所属时间的长

短有直接联系。3>序列中每个数据需要连续登记取得。如国内生产总值序列

(2)当绝对数时间序列中的总量数据反映的就是现象在某一时点上所处的总量时,称该序列为时

点序列。 其特点:1>序列中不同时点的数据不具有可加性。2>序列中各数据的大小与其间隔长短

没有直接联系。3>序列中各数据无需连续登记取得。如我国2000~2010年全国年末总人口序

16、季节变动分析中的按月(季)平均法与趋势剔除法有什么不同?

(1)按月(季)平均法:直接根据原时间序列通过简单平均来计算季节指数,适用于包含水平趋势、季

节变动与不规则变动的时间序列,即时间序列中不存在明显的长期趋势与循环波动因素。

·【基本假定】原时间序列包含水平趋势、季节变动与不规则变动,没有明显的上升或下降的长期

趋势与循环变动

·【计算步骤】

第一步:计算时间序列中各年同期(同月或同季)的平均数;

第二步:计算时间序列全部数据的总平均数;

第三步:计算各年同期(同月或同季)的平均数与总平均数的比值,即为季节指数(S)。

数据的计量尺度有哪些

公式:

(2)趋势剔除法:该方法的基本思想就是,先将时间序列中的长期趋势予以消除,然后再计算季节指

数 。

·【基本假定】采用移动平均趋势剔除法分析季节变动时,假定时间序列各要素的关系结构

为:y=T×S×C×I,同时假定各年度的不规则波动I彼此独立

·【计算步骤】

第一步:根据各年的月份(或季度)数据,计算12个月(或4个季度)移动平均趋势值T×C;

第二步:将各实际观察值y除以相应趋势值T×C,即:

17、什么就是同度量因素?它有何作用?

(1)同度量因素就就是使不同度量的现象过渡到可以同度量的没接因素。

(2)作用:1)同度量作用,即作为一种媒介,使原来度量单位不同而不能直接相加的现象数量,过渡到

可以直接相加的现象数量。2)权数的作用,即起着权衡各个不同变量值在总体变动中的作用,也就

就是说,同度量因素比较大的变量值对综合指数的影响程度大,反之则小。

第三步:将S×I重新按月(季)排列,求得同月(或同季)平均数,再将其除以总平均数,即得季节指数S。


发布者:admin,转转请注明出处:http://www.yc00.com/web/1713438912a2249129.html

相关推荐

发表回复

评论列表(0条)

  • 暂无评论

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信