LTE MIMO 模式的学习理解

LTE MIMO 模式的学习理解


2024年4月4日发(作者:)

MIMO 学习心得 --------Ellen wang

LTE的7个传输模式中6 个分别应用了四种MIMO技术方案:传输分集(TD),

波束赋型(Beamforming),空间复用(SM),多用户MIMO(MU-MIMO):

1. 为普通单天线传输模式。

2. TransmitDiversity 模式:分2发送天线的SFBC,和4发送天线的

SFBC+FSTD两种方案。

2发送天线的SFBC : SFBC是由STBC(Space Time Block Code)演变而

来,由于OFDM一个slot的符号数为奇数,因此不适于使用STBC,但频域

资源是以RB=12个子载波来分配的,因此可以用连续两个子载波来代替连续

两个时域符号,从而组成SFBC。

而当使用4发送天线时,SFBC+FSTD(Frequency Switched Transmit

Diversity)被采用。

3. SM-open loop,UE仅仅反馈信道的RI(Rank Indicator)。此时基站会使

用CDD(Cycle Delay Diversity)技术。

4. SM-close loop,UE根据信道估计的结果反馈合适的PMI(Precoding

Matrix Indicator)。(如利用系统容量最大计算合适的PMI)

5. MU-MIMO,该方案将相同的时频资源通过空分,分配给不同的用户。

6. close loop rank1——SM or BF,UE反馈信道信息使得基站选择合适的

Precoding。

7. UE Special RS——BF,和BeamForming的前一种方式不同,这种方式无需

UE反馈信道信息,而是基站通过上行信号进行方向估计,并在下行信号中

插入UE Special RS。基站可以让UE汇报UE Special RS估计出的CQI。

空间复用是为了提高传输数据数量,

基于多码字的同时传输,即多个相互独

立的数据流通过映射到不同的层,再由不同的天线发送出去。码字数量与天线

数量未必一致。(当然天线数量>=码字数量)。

传输分集主要用于提高信号传输的可靠性,例如采用空时编码(STC)、循

环延时分集(CDD)及天线切换分集等,LTE中用的比较多的是SFBC编码。

传输分集(TM2)用来提高信号传输的可靠性,主要是针对小区边缘用户,

TM3,TM4主要是针对小区中央的用户,提高峰值速率。MU-MIMO是为了提

高吞吐量,用于小区中的业务密集区。TM6,TM7是用于增强小区覆盖,也是

用于边缘用户。不过6是针对FDD,7是针对TDD而已。

在学习理解MIMO之前,需要理解几个基本概念:

1. codeword: 相当于TranportBlock, 即物理层需要传输的原始数据块. LTE可支

持在同一块资源同时传输2个相对独立的codeword,这是通过空间复用

(SM)技术实现的。

2. layer:数据被分为不同layer进行传输,layer总数<=天线个数。和信道矩阵

的rank是对应的。相当于空分的维度。

3. rank:相当于总的layer数。

4. atenna port:其实并不等同于天线个数,而是相当于不同的信道估计参考信

号pattern。对端口0~3,确实对应多天线时,RS的发送pattern;对于端口

4,对应于PMCH,MBSFN情况的RS;对于端口5,对应于UE Special

RS。

TDD-LTE中支持的传输模式使用的DCI format 。在每一种模式中都可以通过改变

DCI format切换到发射分集模式(TM2),并且TM3、TM4 模式下,也支持在不

改变DCI format的情况下从空分复用切换到发射分集模式(TM2),这时需要通

过在DCI format中的precoding information field 来指示所使用的precoding matrix

vector。

From 36.213 Table 7.1-5

Table 7.1-5: PDCCH and PDSCH configured by C-RNTI

Mode 2 DCI format 1A

DCI format 1

Mode 3 DCI format 1A

DCI format 2A

Mode 4 DCI format 1A

DCI format 2

Mode 7 DCI format 1A

Common and

UE specific by C-RNTI

UE specific by C-RNTI

Common and

UE specific by C-RNTI

UE specific by C-RNTI

Common and

UE specific by C-RNTI

UE specific by C-RNTI

Common and

UE specific by C-RNTI

Transmit diversity (see subclause

7.1.2)

Transmit diversity (see subclause

7.1.2)

Transmit diversity (see subclause

7.1.2)

Large delay CDD (see subclause 7.1.3)

or Transmit diversity (see subclause

7.1.2)

Transmit diversity (see subclause

7.1.2)

Closed-loop spatial multiplexing (see

subclause 7.1.4)or Transmit diversity

(see subclause 7.1.2)

If the number of PBCH antenna ports is

one, Single-antenna port, port 0 is used

(see subclause 7.1.1), otherwise

Transmit diversity (see subclause

7.1.2)

Single-antenna port; port 5 (see

subclause 7.1.1)

DCI format 1 UE specific by C-RNTI

PDSCH process flow:

Layer mapping

Now codeword-to-layer mapping support 3 types:

1. Layer mapping for transmission on a single antenna port

1 codeword-to-1 layer

2. Layer mapping for spatial multiplexing

2 antenna ports:

1) 1 codeword-to-1 layer

2) 2 codewords-to-2 layers

4 antenna ports:

1) 1 codeword-to-1 layer

2) 1 codeword-to-2 layers

3) 2 codewords-to-2 layers

4) 2 codewords-to-3 layers

5) 2 codewords-to-4 layers

Table 6.3.3.2-1: Codeword-to-layer mapping for spatial multiplexing.

Number of layers Number of codewords Codeword-to-layer mapping

layer

i0,1,...,M

symb

1

1 1

x

(0)

(i)d

(0)

(i)

x

(0)

(i)d

(0)

(i)

layer(0)

M

symb

M

symb

2 2

x

(1)

(i)d

(1)

(i)

2 1

layer(0)(1)

M

symb

M

symb

M

symb

x

(0)

(i)d

(0)

(2i)

x

(1)

(i)d

(0)

(2i1)

layer(0)

M

symb

M

symb

2

x

(0)

(i)d

(0)

(i)

3 2

x(i)d

(1)(1)

(2i)

layer(0)(1)

M

symb

M

symb

M

symb

2

x

(2)

(i)d

(1)

(2i1)

x

(0)

(i)d

(0)

(2i)

x

(1)

(i)d

(0)

(2i1)

4 2

layer(0)(1)

M

symb

M

symb

2M

symb

2

x

(2)

(i)d

(1)

(2i)

x

(3)

(i)d

(1)

(2i1)

3. Layer mapping for transmit diversity

1 codeword-to-2 layers (2 antenna ports)

1 codeword-to-4 layers (4 antenna ports)

Table 6.3.3.3-1: Codeword-to-layer mapping for transmit diversity.

Number of

layers

Number of

codewords

Codeword-to-layer mapping

layer

i0,1,...,M

symb

1

x

(0)

(i)d

(0)

(2i)

2 1

x

(1)

(i)d

(0)

(2i1)

layer(0)

M

symb

M

symb

2

x

(0)

(i)d

(0)

(4i)

x

(1)

(i)d

(0)

(4i1)

4 1

layer

M

symb

x

(2)

(i)d

(0)

(4i2)

x

(3)

(i)d

(0)

(4i3)

(0)

(0)(0)

M

symb

4if M

symb

mod40

(0)(0)

M

symb

24 if M

symb

mod40



If

M

symb

mod40

two null symbols shall be

appended to

d

(0)

(0)

(M

symb

1)

Preconding

Now precoding support 3 types:

1. Precoding for transmission on a single antenna port

2. Precoding for transmit diversity

y

(0)

(2i)

j0

Rex

(0)

(i)

10

(1)



010

(1)

j

1

y(2i)Rex(i)





(0)(0)

y(2i1)

0j

Imx(i)

2

01

(1)





(1)

10j0

y(2i1)Imx(i)







3. Precoding without CDD---- Closed-loop spatial multiplexing scheme(TM4)

y

(0)

(i)



x

(0)

(i)





W(i)

y

(P1)

(i)



x

(

1)

(i)



4. Precoding for large delay CDD ---- Large delay CDD scheme(TM3 )

y

(0)

(i)



x

(0)

(i)



W(i)D(i)U



y

(P1)

(i)



x

(

1)

(i)



U

and

D(i)

can get from below table according to different layer

Table 6.3.4.2.2-1: Large-delay cyclic delay diversity.

Number of

layers

2

U

1

1

1

j2

2

2

1e

1

1

1

j2

1e

3

j4

1e

1

3

3

D(i)

0



1

0e

j2

i2



3

3

0

1

0e

j2

i3

0

0

0

e

j4

i3

0

3

e

j4

e

j8

4

1

1

1e

j2

1

2

1e

j4

j6

1e

1

4

4

4

1

e

4

4

e

j4

4j6

4

e

j8

e

j12

e

j12

e

j18

4

4

0

1

0e

j2

i4

00

0

0

0

0

e

j4

i4

0

0

0

e

j6

i4

0

For

W(i)

can selected from codebook defined in 36.211 Table 6.3.4.2.3-1.

Table 6.3.4.2.3-1: Codebook for transmission on antenna ports

0,1

.

Codebook

index

1

Number of layers

2

0

1

1



2

1

1

10



2

01

1

1

1

1

2



1

11



2

11

2

1

1

j

2



1

1

j

2



1

11



2

jj

3

-

PMI

UE will report the suggested codebook index by PMI and eNB will send the

codebook info which eNB will use for PDSCH by DCI.

For different transmission mode, the PMI will use different number of bits.

Table 7.2-1b: Number of bits in codebook subset restriction bitmap for applicable

transmission modes.

Transmission mode 3

Number of bits

A

c

2 antenna

ports

4 antenna

ports

2

4

Transmission mode 4

Transmission mode 5

Transmission mode 6

Transmission mode 8

6

64

4

4

16

16

6

32

➢ Transmission mode 3:

PMI will use 2 bits---

a

0

a

1

For 2 antenna ports:

a

1

means 2 layers ----codebook index 0 --------

1

10

01

2



a

0

means 1 layer ----- codebook index 0 -------means transmit diversity

➢ Transmission mode 4:

PMI will use 6 bits---

a

0

a

1

a

2

a

3

a

4

a

5

For 2 antenna ports, defined in 36.211 Table 7.2-1c:

a

0

means 1 layer ----codebook index 0-----

1

1



2

1

1

1



2

1

1

1



2

j

1

1



2

j

a

1

means 1 layer ----codebook index 1-----

a

2

means 1 layer ----codebook index 2------

a

3

means 1 layer ----codebook index 3-------

a

4

means 2 layers ----codebook index 1------



2

11

a

5

means 2 layers ----codebook index 2------



2

jj

Table 7.2-1c: Association of bits in codebookSubSetRestriction bitmap to precoders in the

2 antenna port codebook of Table 6.3.4.2.3-1 in [3].

Codebook

index

i

c

0

1

2

3

1

a

0

a

1

a

2

a

3

2

-

a

4

a

5

-

Number of layers

1

11

1

11

Precoding info in DCI

eNB will send the precoding info in DCI format 2/2A.

➢ Transmission mode 3:

DCI format 2A:

Precoding information – number of bits as specified in Table 5.3.3.1.5A-1

For antenna ports 2, the precoding information field is not present.

Table 5.3.3.1.5A-1: Number of bits for precoding information.

Number of antenna ports at eNodeB

2

4

Number of bits for precoding information

0

2

The number of transmission layers is equal to 2 if both codewords are enabled;

transmit diversity is used if codeword 0 is enabled while codeword 1 is disabled.

But the PDCCH format will use DCI format 2A no matter spatial multiplexing or

transmit diversity.

➢ Transmission mode 4:

DCI format 2:

Precoding information – number of bits as specified in Table 5.3.3.1.5-3(36.212)

Table 5.3.3.1.5-3: Number of bits for precoding information.

Number of antenna ports at eNodeB

2

4

Number of bits for precoding information

3

6

For antenna ports 2, there are 3 bits for precoding information, detail info see

below table:

Precoding info bit field mapped to index:

For 2 layers:

Precoding info codebook index

1

11

0 0 ------------means 2 layers –precoding matrix

2

11

1

11

1 1 ------------means 2 layers –precoding matrix

2

jj

2 X ------------means 2 layers –precoding matrix used

the latest PMI report on PUSCH, using the precoder(s)

indicated by the reported PMI(s)

For 1 layer:

Precoding info codebook index

0 0 ------------means 2 layers: Transmit diversity

T

1 1 ------------means 1 layer –precoding matrix

11

/2

2 2 ------------means 1 layer –precoding matrix

11

/2

T

3 3 ------------means 1 layer –precoding matrix

1j

/2

T

T

4 4 ------------means 1 layer –precoding matrix

1j

/2

5 X ------------means 1 layer –precoding matrix will use the latest

PMI report on PUSCH, using the precoder(s) indicated by the

reported PMI(s),

if RI=2 was reported, using 1

st

column multiplied by

precoders implied by the reported PMI(s)

2

of all

6 X ------------means 1 layer –precoding matrix will use the latest

PMI report on PUSCH, using the precoder(s) indicated by the

reported PMI(s),

if RI=2 was reported, using 2

nd

column multiplied by

precoders implied by the reported PMI(s)

2

of all

36.212 Table 5.3.3.1.5-4: Content of precoding information field for 2 antenna ports.

One codeword:

Codeword 0 enabled,

Codeword 1 disabled

Bit field

mapped to

index

0

Message

2 layers: Transmit

diversity

Two codewords:

Codeword 0 enabled,

Codeword 1 enabled

Bit field

mapped

to index

0

Message

2 layers: Precoding

corresponding to

precoder matrix

1

11



2

11

1 1 layer: Precoding

corresponding to

precoding vector

1 2 layers: Precoding

corresponding to

precoder matrix

11

T

/

2

2

1

11



2

jj

2 2 layers: Precoding

according to the latest

PMI report on

PUSCH, using the

precoder(s) indicated

by the reported

PMI(s)

1 layer: Precoding

corresponding to

precoder vector

11

/2

T

3 1 layer: Precoding

corresponding to

precoder vector

3 reserved

1

4

j

/2

T

1 layer: Precoding

corresponding to

precoder vector

4 reserved

1

5

j

/2

T

1 layer:

Precoding according to

the latest PMI report on

PUSCH, using the

precoder(s) indicated by

the reported PMI(s),

if RI=2 was reported,

using 1

st

column

multiplied by

2

of all

precoders implied by the

reported PMI(s)

5 reserved

TM7 mode:

For transmission mode 7 , can support one port and two ports .

NumAntennaPort = 1

tansmissionMode = TM7

DCI 1 -port 5--------------beamforming

Cell-RS ----port 0 D-RS ----port 5

/////////////////////////////////////////////////////////////////////////////////////////////////////////

NumAntennaPort = 2

tansmissionMode = TM7

DCI 1 - port 5-------------- Beamforming

Cell-RS ----port 0, port 1 D-RS ----port 5

/////////////////////////////////////////////////////////////////////////////////////////////////////////

For beamforming ,the PDSCH will use port5 ,and no mater RRU has 2 or 4 or 8 physical

antenna , Baseband will send the same signal in all these physical antennas, just every

antenna has different phase and amplitude. So in this mode, RRU has no primary and

secondary antenna .

And for NumAntennaPort =1 and NumAntennaPort =2, the beamforming the main

difference is for Cell-RS ,

When NumAntennaPort =1, Cell-RS is sending on port 0

When NumAntennaPort =2, Cell-RS is sending on port 0 and port 1.

This difference will just impact the RE which used for PDSCH data.

/////////////////////////////////////////////////////////////////////////////////////////////////////////

Under TM7 mode, can support beamforming and transmit diversity using different DCI

format .DCI 1 for beamforming and DCI 1A for transmit diversity.

NumAntennaPort = 1

tansmissionMode = TM7

DCI 1A -port 0-----------single-antenna port, port 0

Cell-RS ----port 0

This mode is just like TM1

/////////////////////////////////////////////////////////////////////////////////////////////////////////

NumAntennaPort = 2

tansmissionMode = TM7

DCI 1A -port 0, port1 --transmit diversity

Cell-RS ----port 0, port 1

This mode is just like TM2


发布者:admin,转转请注明出处:http://www.yc00.com/web/1712167190a2016922.html

相关推荐

发表回复

评论列表(0条)

  • 暂无评论

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信