原位限域生长策略制备有序介孔碳负载的超小MoO_(3)纳米颗粒

原位限域生长策略制备有序介孔碳负载的超小MoO_(3)纳米颗粒


2024年3月15日发(作者:)

Vol.42

高等学校化学学报

CHEMICALJOURNALOFCHINESEUNIVERSITIES

2021年5月

1589~1597

No.5

doi:10.7503/cjcu20200303

原位限域生长策略制备有序介孔碳负载的

超小MoO

3

纳米颗粒

王常耀,王帅,段林林,朱晓航,张兴淼,李

(复旦大学化学系,上海200433)

摘要采用原位限域生长策略制备了一系列有序介孔碳负载的超小MoO

3

纳米颗粒复合物(OMC-US-MoO

3

).其

中,有序介孔碳被用作基质来原位限域MoO

3

纳米晶的生长.依此方法制备的MoO

3

纳米晶具有超小的晶粒尺

寸(<5nm),并在介孔碳骨架内具有良好的分散度.制得的OMC-US-MoO

3

复合物具有可调的比表面积(428~796

m

2

/g)、孔容(0.27~0.62cm

3

/g)、MoO

3

质量分数(4%~27%)和孔径(4.6~5.7nm).当MoO

3

纳米晶的质量分数为7%

表现出优异的环辛烯选择性氧化性能.

关键词有序介孔碳;氧化钼纳米晶;纳米材料;限域生长

中图分类号O611.4文献标志码A

时,所得样品OMC-US-MoO

3

-7具有最大的孔径、最小的孔壁厚度和最规整的介观结构.该样品作为催化剂时,

InsituConfinementGrowthStrategyforOrderedMesoporousCarbon

SupportUltrasmallMoO

3

Nanoparticles

WANGChangyao,WANGShuai,DUANLinlin,ZHUXiaohang,

(DepartmentofChemistry,FudanUniversity,Shanghai200433,China)

ZHANGXingmiao,LIWei

*

Abstract

,aseriesoforderedmesoporouscarbonsupportultrasmallmo⁃

lybdenananoparticles(OMC-US-MoO

3

)compositeswassynthesizedthroughaninsituconfinementgrowth

dmesoporouscarbonwasusedasthematrixtoinsituconfinethegrowthofMoO

3

nanocrystals.

TheobtainedMoO

3

nanocrystalsshowultrasmallparticlesizes(<5nm)andexcellentdispersityonthemeso-

m

2

/g),porevolumes(0.27―0.62cm

3

/g),MoO

3

contents(4%―27%,massfraction)anduniformporesizes

ainedOMC-US-MoO

3

exhibitstunablespecificsurfaceareas(428―796

(4.6―5.7nm).Asatypicalexample,theobtainedsamplewith7%MoO

3

(denotedasOMC-US-MoO

3

-7)

showsthelargestporesize,ingused

asacatalyst,theOMC-US-MoO

3

-7exhibitsanexcellentcatalyticactivityforselectiveoxidationofcyclooctene

withahighstability.

KeywordsOrderedmesoporouscarbon;MoO

3

nanocrystal;Nanomaterials;Confinementgrowth

UltrasmallparticlesizesandexcellentdispersityoftheMoO

3

activespeciesonsupportmajorly

收稿日期:2020-05-28.网络出版日期:2020-09-24.

基金项目:国家自然科学基金(批准号:21975050)、国家重点研发计划纳米科技重点专项(批准号:2016YFA0204000,

2018YFE0201701)和中国博士后科学基金(批准号:2019M651342)资助.

联系人简介:李伟,男,博士,教授,主要从事介孔材料的合成及应用研究.E-mail:*******************.cn

1590

高等学校化学学报

Vol.42

2]

maceuticalintermediates,etc.

[1,

.Catalyticepoxidationofolefinisoneoftheessentialroutetoproduceepo-

Epoxides,animportantindustrialchemicals,hasbeenwidelyusedinthefieldsoffoodadditives,phar⁃

xides,whidofcatalyst

llcatalysts,preciousmetalofgoldbasedoneillustrates

4]

highactivityforolefinepoxidations

[3,

.However,goldislimitedresourceandveryexpensive,eventhoughit

enumoxide(MoO

3

),asoneofthelowcost,non-toxicandenviron⁃

mentallybenigntransitionmetaloxides,iswidelyusedasheterogeneouscatalysisforFriedel-Craftsalkyla⁃

7]9]

tion

[5]

,hydrogenationreaction

[6,

,epoxidationreaction

[8,

,hydrogenevolutionreaction

[10]

,electrochemical

16]

byseveralgroupswhichhavehighactivityforepoxidationofolefinsinrecentyears

[15,

.

12]14]

energystorageforlithium-ionbatteries

[11,

,andgassensors

[13,

,etc..Gratifyingly,MoO

3

hasbeenreported

ertiesforapplication

[17~20]

.However,thesynthesisandreactionprocessofteneasilycausesserioussintering,

migrationandagglomerationoftheMoO

3

nanoparticles,⁃

hasbeenwidelyusedasanoutstanding

matrixtocontrolthesizeanddispersityofsupportedmetaloxidesattributingtoitsadvantagesofintrinsical

chemicalinertness,highthermalstability,non-toxicandwide-sources

[21~23]

.Molybdenasupportedcarbon

Chengroup

[26]

fabricatedγ-Fe

2

O

3

@C@MoO

3

core-shellstructurednanoparticlesasamagneticallyrecyclable

ItisobviousthatthesizeandmorphologyofMoO

3

activespeciesarecriticalfactorsthataffecttheirprop⁃

25]

havebeenreportedandshowexcellentperformanceasthecatalystforcycloocteneepoxidation

[24,

.Recently,

tedcarbonlayerplayanefficientroleforthestabiliza⁃

rgroup

[8]

alsoreportedacarbonmicrospheres-supportedmolybdenananoparticles

supports,especially,mesoporouscarbonhavebeenreportedonmanycatalyticareas

becauseofitslargesurfacearea,porevolumeandporesize,whichcannotonlyimprovetheloadcapacitybut

lentdispersity.

cr,above-mentionedcatalysts

alsoenlargethereactionprogress,wherethediffusionprocessmaybetherate-limitingstep

[26~28]

.Uptonow,

itisstillurgenttofabricatemesoporouscarbonsupportedMoO

3

catalystwithultrasmallparticlesizeandexcel⁃

MoO

3

)strategy,theorderedmesoporouscarbon

Herein,weconstructanorderedmesoporouscarbonsupportultrasmallMoO

3

nanoparticles(OMC-US-

worksasamatrixtoinsituconfinethegrowthofMoO

3

ainedMoO

3

nanocrystalsshow

(massfraction)ofMoO

3

canbetunedfrom4%to27%.TheobtainedOMC-US-MoO

3

showstunablespecific

ultrasmallparticlesize(<5nm)tent

surfaceareas(428―796m

2

/g),porevolumes(0.27―0.62cm

3

/g)anduniformporesize(4.6―5.7nm).As

MoO

3

-7exhibitsanexcellentcatalyticactivityforselectiveoxidationofcyclooctenewithahighstability.

atypicalexample,theobtainedsamplewith7%MoO

)showslargestporesize,

3

denotedasOMC-US-MoO

3

-7

ingusedasacatalyst,theOMC-US-

1Experimental

1.1

PluronicF127(EO

106

PO

70

EO

106

,M

w

=12600)erschemicalswere

Indetailsynthesisprocedure,1.0gofPluronicF127powderswasaddedinto10.0gofethanolsolution

SynthesisofOrderedMesoporousCarbonSupportUltrasmallMolybdenaNanoparticles

ChemicalsandMaterials

zedwaterwasusedinallexperiments.

1.2

andstirredtoahomogeneousclearsolutionat40℃.Afterwards,5.0gof20%(massfraction)preformed

No.5

王常耀等:原位限域生长策略制备有序介孔碳负载的超小MoO

3

纳米颗粒

1591

phenolicresinsethanolsolutionand1.0mLofperoxomolybdenumprecursorsolutionwereaddedintotheho⁃

mogeneoussystem(5—200mg/mL).Thepreformedphenolicresinswassynthesizedbasedonthereported

28]

method

[27,

.Peroxomolybdenumprecursorsolution

[29]

waspreparedbydissolvingdifferentcontentsofmolyb⁃

denumtrioxideinto10.0mLof30%turesolutionwaspouredintodishesafter2h

andthenthedisheswereheattreatedat40and100℃for8and20h,respectively,formingtheas-madecom⁃

positesconsistingofPluronicF127,phenolicresins,andMospecies(denotedasas-madesample).Then,the

calcinationofas-madesamplewasimplementedinatubularfurnaceunderN

2

perature

1℃/min,ainedsampleafterpyrolysiswasnamedasorderedmesoporouscarbon

ofMoO

3

.

1.3ActivityTest

supportultrasmallmolybdenananoparticles(OMC-US-MoO

3

-x),whereinxrepresenttheactualmassfraction

Theselectiveoxidationreactionofcyclooctenewascarriedoutintheround-bottomflask(50mL).In

programwassetfrom25℃to350℃witharampof1℃/min,maintenancefor3h,andthento600℃with

which,40.0mmolofcyclooctene,40.0mmolof5.5mol/LTBHPindecane,10mgofOMC-US-MoO

3

-7cata⁃

lyst(0.0048mmol/LofMoO

3

),6.0gof1,2-dichloroethaneassolvent,and15.0mmolofchlorobenzeneas

ctiontemperatureis80℃.Atdifferenttimeintervals,conversionwascalculatedby

alystwasreusedafterwashingbywaterand

tconditionwaskeptsametothefirsttimeonthecyclictest.

pleswereanalyzedonanAgilent7890AgaschromatographequippedwithaHP-5column

ues(molofreactedcyclooctenepermolofcatalystandhour)

2ResultsandDiscussion

2.1

Thedevelopedinsituconfinementgrowthstrategyisemployedtothepreparationoforderedmesoporous

SynthesisandCharacterizaiton

carbonsupportultrasmallmolybdenananoparticles(OMC-US-MoO

3

)composites(Fig.1).Inthesynthesissys⁃

tem,PluronicF127isusedasthestructure-directingagent(soft-template),preformedphenolicresinsisused

ascarbonresource,peroxomolybdenumsolutionisusedasprecursor,andethanol/H

2

Oisusedasco-solvent,

-madesampleandproductOMC-US-MoO

3

compositescanbeobtainedafterheat-treatment

at100and600℃,scontentofMoO

3

intheOMC-US-MoO

3

compositescanbewell

tunedthroughadjustingtheamountofperoxomolybdenumprecursorinthesynthesissystem.

Fig.1IllustrationoftheconstructionofOMC⁃US⁃

MoO

3

compositesviatheinsituconfinement

growthstrategy

Fig.2TGAcurvesoftheOMC⁃US⁃MoO

3

composites

withdifferentMoO

3

contentsobtainedafter

pyrolysisat600℃,respectively

MassfractionofMoO

3

(%):a.4;b.7;c.10;d.16;e.27.

TGAcurves(Fig.2)showthatthemassfractionsofMoO

3

speciesintheOMC-US-MoO

3

compositesare

1592

高等学校化学学报

Vol.42

4%,7%,10%,16%and27%(Table1),respectively,whenadjustingtheamountofmolybdenumprecursors

slossbelow100℃iscausedbythevolatilizationofadsorbedwaterinthe

tmassincreasementcanbedetectedbetween100and300℃,demonstratingtheexistence

oftraceamountofMoO

2

andabundantMoO

3

sincreasementcanbeattributedtothe

tothemassfractionofMoO

3

speciesinthecomposites.

SampleNo.

1

2

3

4

5

MoO

3

content(%,massfraction)

4

7

10

16

27

oxidationofthetraceamountMoO

2

.Subsequently,thehugemasslossabove300℃canbeobservedattribu-

slossbetween100and600℃isapproximate

Table1StructuralandtexturalparametersforOMC-US-MoO

3

withdifferentcontent

S

BET

(/m

2

·g

-1

796

693

652

574

428

V(/cm

3

·g

-1

0.62

0.54

0.49

0.41

0.27

D/nm

4.7

5.7

5.5

5.4

4.6

diffractionpeaksat0.391and0.782nm

−1

,and0.412and0.824nm

‒1

,respectively,indexingtothe(100)

and(200)eincreasementofMoO

3

content,theqvaluesofthe(100)diffractionpeaksshiftto0.532,0.617,and0.678nm

−1

,forsamples

tersoffivecompositesarecalculatedtobeabout18.5,17.6,13.6,11.7,and10.7nmwiththeincreased

MoO

3

content,atterns[Fig.3(B)]offivecompositesallshownodiffractionpeaksof

ultrasmallsizeevenatahighMoO

3

contenteffectively.

demonstratesthattheorderedmesoporouscarbonframeworkscanconfinethesizeofMoO

3

nanocrystalstoan

OMC-US-MoO

3

-10,OMC-US-MoO

3

-16,andOMC-US-MoO

3

-27,respondingcellparame⁃

MoO

3

phase,suggestingtheultrasmallparticlesizeofMoO

3

sult

TheSAXSpatterns[Fig.3(A)]ofOMC-US-MoO

3

-4andOMC-US-MoO

3

-7compositesshowtwoscattering

Fig.3SAXS(A)andWA⁃XRD(B)patternsoftheOMC⁃US⁃MoO

3

compositeswithdifferent

MoO

3

contentsobtainedafterpyrolysisat600℃

MassfractionofMoO

3

(%):a.4;b.7;c.10;d.16;e.27.

600℃inN

2

alldisplayrepresentativetype-ⅣcurveswithH2hysteresisloops[Fig.4(A)],inagreementwith

thepreviouslyreportedorderedmesoporousmaterials

[30~32]

.Sharpcapillarycondensationstepsintherelative

nauer-Emmett-Teller(BET)surfaceareaandporevolumeoffivecompositesarecalculatedand

pressure(p/p

0

)of0.41―0.70areobservedforfivecomposites,demonstratingthenarrowporesizedistribu⁃

faceareaandporevolumedecreasewiththeincreasedMoO

3

content,whichcanbe

rageporesizesoffivecompositesare

alsocalculatedandlistedonTable1fromtheirporesizedistributioncurve[Fig.4(B)]derivedfromthe

rageporesizesare4.7,5.7,5.5,5.4,and4.6nm,

Nitrogenadsorption-desorptionisothermsoffiveOMC-US-MoO

3

compositesobtainedaftercalcinedat

No.5

王常耀等:原位限域生长策略制备有序介孔碳负载的超小MoO

3

纳米颗粒

1593

Fig.4N

2

adsorption⁃desorptionisotherms(A)andporesizedistributions(B)oftheOMC⁃US⁃MoO

3

compositeswithdifferentMoO

3

contentsobtainedafterpyrolysisat600℃

MassfractionofMoO

3

(%):a.4;b.7;c.10;d.16;e.27.

ingtothecellparametersresults,theporewallsoffivecompositesarecalculatedtobe

14.1,11.9,8.1,6.3,and6.1nm,respectively.

y,theregular[100]and[110]directionscanbeclearobservedfromtheSEMimages

SEMimages(Fig.5)showthatOMC-US-MoO

3

-4andOMC-US-MoO

3

-7compositesownthemostregular

ofOMC-US-MoO

3

-7composites[Fig.5(B)and(F)].Inaddition,themesoporesareopenedandnoobvious

alongthe[100]and[110]directionsmanifestawell-defined2Dhexagonalmesostructuresinagreementwith

rtherincreasementofMoO

3

content,thereg⁃

gesofOMC-US-MoO

3

-7composites[Fig.6(A)—(C)]taken

theresultoftheSAXSpattern[Fig.2(A)].Thelatticespacingismeasuredtobe0.35nmfromtheHRTEM

image[Fig.6(D)],attributingtothe(040)crystallineplanesofα-MoO

3

[33]

.TheaveragesizeofMoO

3

nano⁃

US-MoO

3

-7compositesshowsthepresenceofonlyMo,OandCelements[Fig.7(A)].Thehigh-resolution

stratingtheco-existenceofMo

4+

andMo

6+

species

[34~36]

.TheratioofMo

4+

/Mo

6+

iscalculatedtobeabout13%.

OnlyafewMo

4+

signalscanbedetectedfromthespectrum,inagreementwiththeTGAresults.

Mo

3d

corelevelXPSspectra[Fig.7(B)]showfourpeaksat230.5,232.7,233.6,and235.9eV,demon⁃

crystalsisestimatedtobe(4.1±1.0)veyspectrumoftheOMC-

Fig.5SEMimagesofOMC⁃US⁃MoO

3

compositeswithdifferentMoO

3

contentsobtainedafter

pyrolysisat600℃

MassfractionofMoO

3

(%):(A)4;(B)7;(C)10;(D)16;(E)27.

1594

高等学校化学学报

Vol.42

Fig.6

Viewedalongthehexagonal(A)andcolumnar(B,C)directionsandHRTEMimage(D)ofarepresentativeMoO

3

nanoparticle.

TEMimagesofOMC⁃US⁃MoO

3

⁃7compositesobtainedafterpyrolysisat600℃

Fig.7SurveyXPSspectrum(A)andhigh⁃resolutionXPSspectraofMo

3d

(B)forOMC⁃US⁃MoO

3

⁃7

compositesobtainedafterpyrolysisat600℃

2.2

impactontheformationoffinalOMC-US-MoO

3

ainedMoO

3

nanocrystalsshowultrasmall

retainedeventhemassfractionofMoO

3

isincreasedto27%.However,theregularmesostructurescanbe

talscanbedetectedfromsamplesobtainedafterpyrolysisat600℃,theunregularmesostructurescanbe

attributedtotheuncontrollableoriginco-assemblyprocess.

2.3SelectiveOxidationofCyclooctene

Theselectiveoxidationreactionofcyclooctenewithhighcatalyticperformanceandstabilityisstillhighly

Basedontheaboveresults,weproposethattheinsituconfinementgrowthstrategyshowsignificant

FormationMechanismStudies

particlesize(<5nm)ructurecanbe

partialdestroyedwiththeincreasedMoO

3

ingtotheresultsthatnolargeMoO

3

nanocrys⁃

r,thestabilityofactivenanoparticlesincatalyticreactionisamajorchallenge,especiallyfor

case,theOMC-US-MoO

3

-7compositesshowmostregular

werecarriedoutusing1,2-dichloroethaneassolventinflaskwithchlorobenzeneasinternalstandardat80℃.

mesostructures,largestporesizes,appropriateholewallsize,MoO

3

,theobtained

OMC-US-MoO

3

-7comctions

TheOMC-US-MoO

3

-7compositescatalystshowsahighTOFvalueof2163h

‒1

whichiscalculatedonthebasis

(>99%)to1,isonwiththereportedheterogeneous

ile,ahighconversion(100%)ofcyclooctene,andselectivity

sentOMC-US-MoO

3

-7catalystshows

No.5

王常耀等:原位限域生长策略制备有序介孔碳负载的超小MoO

3

纳米颗粒

1595

ahigherTOFvaluethanMoO

3

/C

[8]

,MoO

3

/SiO

2

[37]

,Mo-MOFs

[9]

,Mo-MCM-41

[38]

,Mo-SBA-15

[38]

,[Pipera⁃

[39]

zinCH

2

{MoO()}],andMNP

30

-Si-inic-Mo

[40]

ldbenotedthatcyclooc⁃

2

Salen

n

tenestillgaveabout18%conversion[Fig.8(A)]intheabsenceofcatalystowingtothepresenceofstrong

42]

TBHPoxidants,whichisconsistentwithpreviousreports

[41,

.Further,twoothersubstrates,cyclohexene

andstyrenewerealsotestedunderthesameconditionstotesttheversatilityofOMC-US-MoO

3

-7asanepoxida⁃

singly,theconversionofcyclohexeneto1,2-epoxyclohexanecanreach54%

portingInformationofthispaper).

Table2

OMC

-

US

-

MoO

3

-

7

MoO

3

/C

MoO

3

/SiO

2

Mo

-

MOFs

Mo

-

MCM

-

41

[PiperazinCH

2

{MoO()}]

2

Salen

n

MNP

30

-

Si

-

inic

-

Mo

*

Mo

-

SBA

-

15

Catalyst

addition,theconversionofstyrenetostyreneoxidecanreach95%in36h,respectively(Fig.S1,seetheSup⁃

CalculatingTOFvalueforepoxidationofcycloocteneandcomparingwithothercatalysts

*

Time/h

2

2

6

7

3

12

24

3

Conv.(%)

52

80

90

93

97

99

95

46

Epoxidesel.(%)

>99

100

100

99

95

93

100

98

TOF/h

-1

2163

[8]

53

[9]

270

[36]

22

[36]

40

[37]

16

[38]

2

[35]

72

halfconversionofthereaction.

.TOFvalues(molofreactedcyclooctenepermolofcatalystandhour)werecalculatedatabout

Fig.8Timecourseplotsofcycloocteneepoxidation(A)andreusability(B)byusingOMC⁃US⁃MoO

3

⁃7com⁃

positesascatalyst

Reactionconditions:40.0mmolofcyclooctene,40.0mmolof5.5mol/LTBHPindecane,10mgofOMC-US-MoO

3

-7

catalyst(0.0048mmol/LofMoO

3

),6.0gof1,2-dichloroethaneassolvent,and15.0mmolofchlorobenzeneasinternal

ctiontemperatureis80℃.

tant,,thehotfiltrationtestwasusedtoassessthepresenceof

BesidetheefficientconversionofcatalystandhighTOFvalues,thestabilityofcatalystisalsoveryimpor⁃

ereactionlastedfor2h,weremovedthecatalystbyhotfiltrationand

ultsshowedthattherewasonlyaslightincreaseincon⁃

version[Fig.8(A)],recyclingstudy,cycloocteneepoxida⁃

tionwasperformedmaine

catesthatultrasmallMoO

3

nanoparticlessupportedonorderedmesoporouscarbonishighlystableandcanbe

reused,demonstratesitspotentialforindustrialapplications.

clearlyfoundthatobviouschangesareundetectedforcatalyticperformanceafterfiveruns[Fig.8(B)].Itindi⁃

Thehighconversion,selectively,andtheTOFvalueforthecycloocteneepoxidationreactioncanbe

attributedtotheuniquestructureoftheOMC-US-MoO

3

-hsurfacearea,volume,and

1596

高等学校化学学报

Vol.42

uniformmesoporescannotonlyenrichmentthereactionsubstratebutalsoinfavortothediffusionofsub⁃

rasmallMoO

3

nanocrystalssizeanditsexcellentdispersityintheframeworkscanexposemore

lyandconversion.

sefeaturesarebeneficialtotherapidconversionofsubstratemolecularwithhighselective⁃

3Conclusions

rouscarbonsupportultrasmallmolybdenananoparticles(OMC-US-MoO

3

)dmesoporous

tion,aseriousofOMC-US-MoO

3

compositecanbeobtainedwithcontrollablespecificsurface

uniformporesize(4.6―5.7nm).ThemesostructurescanberetainedeventheMoO

3

contentashighas27%.

Insummary,aninsituconfinementgrowthstrategywasdevelopedtotheconstructionoforderedmesopo⁃

carbonwasusedasaneffectivematrixtoinsituconfinethegrowthofMoO

3

ainedMoO

3

nanocrystalsshowultrasmallparticlesize(<5nm)andexcellentdispersityonthemesoporouscarbonframe⁃

areas(428―796m

2

/g),porevolumes(0.27―0.62cm

3

/g),MoO

3

contents(4%―27%,massfraction)and

Asatypicalexample,theobtainedsamplewith7%MoO

3

(denotedasOMC-US-MoO

3

-7)showslargestpore

tenewithahighstability.

size,ingusedasacatalyst,the

OMC-US-MoO

3

-7exhibitsanexcellentcatalyticactivity(2163h

−1

forTOF)forselectiveoxidationofcyclooc⁃

SupportingInformation:/CN/10.7503/cjcu20200303.

nalKeyResearchandDevelopmentProgramofChina(Nos.2016YFA0204000,2018YFE0201701)andChina

PostdoctoralScienceFoundation(No.2019M651342).

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

XiZ.,ZhouN.,SunY.,LiK.,Science,2001,292(5519),1139—1141

KamataK.,YoneharaK.,SumidaY.,YamaguchiK.,HikichiS.,MizunoN.,Science,2003,300(5621),964—966

LiuB.,WangP.,LopesA.,JinL.,ZhongW.,PeiY.,SuibS.L.,HeJ.,ACSCatal.,2017,7(5),3483—3488

BujakP.,BartczakP.,PolanskiJ.,.,2012,295,15—21

DouJ.,ZengH.C.,.C,2012,116(14),7767—7775

XiaoL.P.,WangS.,LiH.,LiZ.,ShiZ.J.,XiaoL.,SunR.C.,FangY.,SongG.,ACSCatal.,2017,7(11),7535—7542

ShettyM.,MurugappanK.,GreenW.H.,Román⁃LeshkovY.,.,2017,5(6),5293—5301

DokeD.S.,UmbarkarS.B.,GawandeM.B.,ZborilR.,BiradarA.V.,.,2016,5(1),904—910

NohH.,CuiY.,PetersA.W.,PahlsD.R.,OrtuñoM.A.,VermeulenN.A.,CramerC.J.,GagliardiL.,HuppJ.T.,FarhaO.K.,

.,2016,138(44),14720—14726

LuoZ.,MiaoR.,HuanT.D.,MosaI.M.,PoyrazA.S.,ZhongW.,CloudJ.E.,KrizD.A.,ThanneeruS.,HeJ.,Mater.,

2016,6(16),1600528

BrezesinskiT.,WangJ.,TolbertS.H.,DunnB.,.,2010,9(2),146—151

ChenL.,JiangH.,JiangH.,ZhangH.,GuoS.,HuY.,LiC.,Mater.,2017,7(15),1602782

HosonoK.,MatsubaraI.,MurayamaN.,WoosuckS.,IzuN.,.,2005,17(2),349—354

WangL.,GaoP.,ZhangG.,ChenG.,ChenY.,WangY.,BaoD.,.,2012,2012(35),5831—5836

FernandesC.I.,CapelliS.C.,VazP.D.,Nunes,C.D.,.A:Gen.,2015,504,344—350

ThispaperissupportedbytheNationalNaturalScienceFoundationofChina(No.21975050),theNatio⁃

[16]daPalmaCarreiroE.,BurkeA.J.,.A:Chem.,2006,249(1),123—128

[17]ChenW.,PeiJ.,HeC.T.,WanJ.,RenH.,ZhuY.,WangY.,DongJ.,TianS.,CheongW.C.,.,2017,56

(50),16086—16090

[18]SolarJ.,DerbyshireF.,DeBeerV.,RadovicL.R.,.,1991,129(2),330—342

[19]LeeS.H.,KimY.H.,DeshpandeR.,ParillaP.A.,WhitneyE.,GillaspieD.T.,JonesK.M.,MahanA.H.,ZhangS.,DillonA.C.,

.,2008,20(19),3627—3632

[20]TavasoliA.,KarimiS.,ShojaM.,.,2013,4(1),21

No.5

王常耀等:原位限域生长策略制备有序介孔碳负载的超小MoO

3

纳米颗粒

1597

[21]WangC.,ZhaoY.,ZhouL.,LiuY.,ZhangW.,ZhaoZ.,HozzeinW.N.,AlharbiH.M.S.,LiW.,ZhaoD.,.A,2018,

6(43),21550—21557

[22]WangC.,WanX.,DuanL.,ZengP.,LiuL.,GuoD.,XiaY.,ElzatahryA.A.,LiW.,ZhaoD.,.,2019,58

(44),15863—15868

[23]ZhangP.,ZhangJ.,DaiS.,.J.,2017,23(9),1986—1998

[24]ReyesP.,BordaG.,GneccoJ.,RivasB.L.,.,2004,93(4),1602—1608

[25]QinM.,LiuM.,ZhangQ.,LiC.,LiangS.,.,2013,128(1),642—646

[26]ZhangF.,HuH.,ZhongH.,YanN.,ChenQ.,DaltonTrans.,2014,43(16),6041—6049

[27]MengY.,GuD.,ZhangF.,ShiY.,YangH.,LiZ.,YuC.,TuB.,ZhaoD.,.,2005,44(43),7053—7059

[28]WangS.,ZhaoQ.,WeiH.,WangJ.Q.,ChoM.,ChoH.S.,TerasakiO.,WanY.,.,2013,135(32),11849—11860

[29]ChenJ.,BurgerC.,KrishnanC.V.,ChuB.,.,2005,127(41),14140—14141

[30]LiuR.,ShiY.,WanY.,MengY.,ZhangF.,GuD.,ChenZ.,TuB.,ZhaoD.,.,2006,128(35),11652—11662

[31]DongW.,SunY.,LeeC.W.,HuaW.,LuX.,ShiY.,ZhangS.,ChenJ.,ZhaoD.,.,2007,129(45),13894—

13904

[32]LiuR.,RenY.,ShiY.,ZhangF.,ZhangL.,TuB.,ZhaoD.,.,2008,20(3),1140—1146

[33]PatnaikS.,SwainG.,ParidaK.,Nanoscale,2018,10(13),5950—5964

[34]QinP.,FangG.,ChengF.,KeW.,LeiH.,WangH.,ZhaoX.,aces,2014,6(4),2963—2973

[35]JiW.,ShenR.,YangR.,YuG.,GuoX.,PengL.,DingW.,.A,2014,2(3),699—704

[36]QinP.,FangG.,KeW.,ChengF.,ZhengQ.,WanJ.,LeiH.,ZhaoX.,.A,2014,2(8),2742—2756

[37]ChandraP.,DokeD.S.,UmbarkarS.B.,BiradarA.V.,.A,2014,2(44),19060—19066

[38]BakalaP.C.,BriotE.,SallesL.,BrégeaultJ.M.,.A

Gen.,2006,300(2),91—99

[39]BagherzadehM.,ZareM.,.,2013,66(16),2885—2900

[40]FernandesC.I.,CarvalhoM.D.,FerreiraL.P.,NunesC.D.,VazP.D.,.,2014,760,2—10

[41]MuylaertI.,MusschootJ.,LeusK.,DendoovenJ.,DetavernierC.,VanDerVoortP.,.,2012,2012(2),251—260

[42]El⁃KorsoS.,BedraneS.,Choukchou⁃BrahamA.,BachirR.,RSCAdv.,2015,5(78),63382—63392

(Ed.:V,K)

锂金属负极亲锂骨架的研究进展

RecentProgressofLithiophilicHostforLithiumMetalAnode

詹迎新,石鹏,张学强,魏俊宇,张乾魁,黄佳琦

ZHANYingxin,SHIPeng,ZHANGXueqiang,

WEIJunyu,ZHANGQiankui,HUANGJiaqi

eUniversities,

2021,42(5),1569—1580

研究论文(Article)

超薄骨架有序介孔CdS/NiS的制备及光催化产氢性能

OrderedMesoporousNiS-loadedCdSwithUltrathin

FrameworksforEfficientPhotocatalyticH

2

Production

杨晓梅,吴强,郭茹,叶凯波,薛屏,王晓中,赖小勇

YANGXiaomei,WUQiang,GUORu,YEKaibo,

XUEPing

,WANGXiaozhong,LAIXiaoyong

eUniversities,

2021,42(5),1581—1588

原位限域生长策略制备有序介孔碳负载的超小MoO

3

纳米

颗粒

Insitu

ConfinementGrowthStrategyforOrderedMesoporous

CarbonSupportUltrasmallMoO3Nanoparticles

王常耀,王帅,段林林,朱晓航,张兴淼,李伟

WANGChangyao,WANGShuai,DUANLinlin,

ZHUXiaohang,ZHANGXingmiao,LIWei

eUniversities,

2021,42(5),1589—1597

全固态锂金属电池多物理场耦合下的电化学过程仿真模拟

SimulationoftheElectrochemistryProcesswiththeCouplingof

MultiplePhysicalFieldsforAll-solid-stateLithiumBatteries

孙哲韬,何英杰,陈邵杰,聂璐,黄缘齐,刘巍

SUNZhetao,HEYingjie,CHENShaojie,NIELu,

HUANGYuanqi,LIUWei

eUniversities,

2021,42(5),1598—1609


发布者:admin,转转请注明出处:http://www.yc00.com/web/1710436993a1756589.html

相关推荐

发表回复

评论列表(0条)

  • 暂无评论

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信