2024年3月15日发(作者:)
Vol.42
高等学校化学学报
CHEMICALJOURNALOFCHINESEUNIVERSITIES
2021年5月
1589~1597
No.5
doi:10.7503/cjcu20200303
原位限域生长策略制备有序介孔碳负载的
超小MoO
3
纳米颗粒
王常耀,王帅,段林林,朱晓航,张兴淼,李
(复旦大学化学系,上海200433)
摘要采用原位限域生长策略制备了一系列有序介孔碳负载的超小MoO
3
纳米颗粒复合物(OMC-US-MoO
3
).其
伟
中,有序介孔碳被用作基质来原位限域MoO
3
纳米晶的生长.依此方法制备的MoO
3
纳米晶具有超小的晶粒尺
寸(<5nm),并在介孔碳骨架内具有良好的分散度.制得的OMC-US-MoO
3
复合物具有可调的比表面积(428~796
m
2
/g)、孔容(0.27~0.62cm
3
/g)、MoO
3
质量分数(4%~27%)和孔径(4.6~5.7nm).当MoO
3
纳米晶的质量分数为7%
表现出优异的环辛烯选择性氧化性能.
关键词有序介孔碳;氧化钼纳米晶;纳米材料;限域生长
中图分类号O611.4文献标志码A
时,所得样品OMC-US-MoO
3
-7具有最大的孔径、最小的孔壁厚度和最规整的介观结构.该样品作为催化剂时,
InsituConfinementGrowthStrategyforOrderedMesoporousCarbon
SupportUltrasmallMoO
3
Nanoparticles
WANGChangyao,WANGShuai,DUANLinlin,ZHUXiaohang,
(DepartmentofChemistry,FudanUniversity,Shanghai200433,China)
ZHANGXingmiao,LIWei
*
Abstract
,aseriesoforderedmesoporouscarbonsupportultrasmallmo⁃
lybdenananoparticles(OMC-US-MoO
3
)compositeswassynthesizedthroughaninsituconfinementgrowth
dmesoporouscarbonwasusedasthematrixtoinsituconfinethegrowthofMoO
3
nanocrystals.
TheobtainedMoO
3
nanocrystalsshowultrasmallparticlesizes(<5nm)andexcellentdispersityonthemeso-
m
2
/g),porevolumes(0.27―0.62cm
3
/g),MoO
3
contents(4%―27%,massfraction)anduniformporesizes
ainedOMC-US-MoO
3
exhibitstunablespecificsurfaceareas(428―796
(4.6―5.7nm).Asatypicalexample,theobtainedsamplewith7%MoO
3
(denotedasOMC-US-MoO
3
-7)
showsthelargestporesize,ingused
asacatalyst,theOMC-US-MoO
3
-7exhibitsanexcellentcatalyticactivityforselectiveoxidationofcyclooctene
withahighstability.
KeywordsOrderedmesoporouscarbon;MoO
3
nanocrystal;Nanomaterials;Confinementgrowth
UltrasmallparticlesizesandexcellentdispersityoftheMoO
3
activespeciesonsupportmajorly
收稿日期:2020-05-28.网络出版日期:2020-09-24.
基金项目:国家自然科学基金(批准号:21975050)、国家重点研发计划纳米科技重点专项(批准号:2016YFA0204000,
2018YFE0201701)和中国博士后科学基金(批准号:2019M651342)资助.
联系人简介:李伟,男,博士,教授,主要从事介孔材料的合成及应用研究.E-mail:*******************.cn
1590
高等学校化学学报
Vol.42
2]
maceuticalintermediates,etc.
[1,
.Catalyticepoxidationofolefinisoneoftheessentialroutetoproduceepo-
Epoxides,animportantindustrialchemicals,hasbeenwidelyusedinthefieldsoffoodadditives,phar⁃
xides,whidofcatalyst
llcatalysts,preciousmetalofgoldbasedoneillustrates
4]
highactivityforolefinepoxidations
[3,
.However,goldislimitedresourceandveryexpensive,eventhoughit
enumoxide(MoO
3
),asoneofthelowcost,non-toxicandenviron⁃
mentallybenigntransitionmetaloxides,iswidelyusedasheterogeneouscatalysisforFriedel-Craftsalkyla⁃
7]9]
tion
[5]
,hydrogenationreaction
[6,
,epoxidationreaction
[8,
,hydrogenevolutionreaction
[10]
,electrochemical
16]
byseveralgroupswhichhavehighactivityforepoxidationofolefinsinrecentyears
[15,
.
12]14]
energystorageforlithium-ionbatteries
[11,
,andgassensors
[13,
,etc..Gratifyingly,MoO
3
hasbeenreported
ertiesforapplication
[17~20]
.However,thesynthesisandreactionprocessofteneasilycausesserioussintering,
migrationandagglomerationoftheMoO
3
nanoparticles,⁃
hasbeenwidelyusedasanoutstanding
matrixtocontrolthesizeanddispersityofsupportedmetaloxidesattributingtoitsadvantagesofintrinsical
chemicalinertness,highthermalstability,non-toxicandwide-sources
[21~23]
.Molybdenasupportedcarbon
Chengroup
[26]
fabricatedγ-Fe
2
O
3
@C@MoO
3
core-shellstructurednanoparticlesasamagneticallyrecyclable
ItisobviousthatthesizeandmorphologyofMoO
3
activespeciesarecriticalfactorsthataffecttheirprop⁃
25]
havebeenreportedandshowexcellentperformanceasthecatalystforcycloocteneepoxidation
[24,
.Recently,
tedcarbonlayerplayanefficientroleforthestabiliza⁃
rgroup
[8]
alsoreportedacarbonmicrospheres-supportedmolybdenananoparticles
supports,especially,mesoporouscarbonhavebeenreportedonmanycatalyticareas
becauseofitslargesurfacearea,porevolumeandporesize,whichcannotonlyimprovetheloadcapacitybut
lentdispersity.
cr,above-mentionedcatalysts
alsoenlargethereactionprogress,wherethediffusionprocessmaybetherate-limitingstep
[26~28]
.Uptonow,
itisstillurgenttofabricatemesoporouscarbonsupportedMoO
3
catalystwithultrasmallparticlesizeandexcel⁃
MoO
3
)strategy,theorderedmesoporouscarbon
Herein,weconstructanorderedmesoporouscarbonsupportultrasmallMoO
3
nanoparticles(OMC-US-
worksasamatrixtoinsituconfinethegrowthofMoO
3
ainedMoO
3
nanocrystalsshow
(massfraction)ofMoO
3
canbetunedfrom4%to27%.TheobtainedOMC-US-MoO
3
showstunablespecific
ultrasmallparticlesize(<5nm)tent
surfaceareas(428―796m
2
/g),porevolumes(0.27―0.62cm
3
/g)anduniformporesize(4.6―5.7nm).As
MoO
3
-7exhibitsanexcellentcatalyticactivityforselectiveoxidationofcyclooctenewithahighstability.
atypicalexample,theobtainedsamplewith7%MoO
(
)showslargestporesize,
3
denotedasOMC-US-MoO
3
-7
ingusedasacatalyst,theOMC-US-
1Experimental
1.1
PluronicF127(EO
106
PO
70
EO
106
,M
w
=12600)erschemicalswere
Indetailsynthesisprocedure,1.0gofPluronicF127powderswasaddedinto10.0gofethanolsolution
SynthesisofOrderedMesoporousCarbonSupportUltrasmallMolybdenaNanoparticles
ChemicalsandMaterials
zedwaterwasusedinallexperiments.
1.2
andstirredtoahomogeneousclearsolutionat40℃.Afterwards,5.0gof20%(massfraction)preformed
No.5
王常耀等:原位限域生长策略制备有序介孔碳负载的超小MoO
3
纳米颗粒
1591
phenolicresinsethanolsolutionand1.0mLofperoxomolybdenumprecursorsolutionwereaddedintotheho⁃
mogeneoussystem(5—200mg/mL).Thepreformedphenolicresinswassynthesizedbasedonthereported
28]
method
[27,
.Peroxomolybdenumprecursorsolution
[29]
waspreparedbydissolvingdifferentcontentsofmolyb⁃
denumtrioxideinto10.0mLof30%turesolutionwaspouredintodishesafter2h
andthenthedisheswereheattreatedat40and100℃for8and20h,respectively,formingtheas-madecom⁃
positesconsistingofPluronicF127,phenolicresins,andMospecies(denotedasas-madesample).Then,the
calcinationofas-madesamplewasimplementedinatubularfurnaceunderN
2
perature
1℃/min,ainedsampleafterpyrolysiswasnamedasorderedmesoporouscarbon
ofMoO
3
.
1.3ActivityTest
supportultrasmallmolybdenananoparticles(OMC-US-MoO
3
-x),whereinxrepresenttheactualmassfraction
Theselectiveoxidationreactionofcyclooctenewascarriedoutintheround-bottomflask(50mL).In
programwassetfrom25℃to350℃witharampof1℃/min,maintenancefor3h,andthento600℃with
which,40.0mmolofcyclooctene,40.0mmolof5.5mol/LTBHPindecane,10mgofOMC-US-MoO
3
-7cata⁃
lyst(0.0048mmol/LofMoO
3
),6.0gof1,2-dichloroethaneassolvent,and15.0mmolofchlorobenzeneas
ctiontemperatureis80℃.Atdifferenttimeintervals,conversionwascalculatedby
alystwasreusedafterwashingbywaterand
tconditionwaskeptsametothefirsttimeonthecyclictest.
pleswereanalyzedonanAgilent7890AgaschromatographequippedwithaHP-5column
ues(molofreactedcyclooctenepermolofcatalystandhour)
2ResultsandDiscussion
2.1
Thedevelopedinsituconfinementgrowthstrategyisemployedtothepreparationoforderedmesoporous
SynthesisandCharacterizaiton
carbonsupportultrasmallmolybdenananoparticles(OMC-US-MoO
3
)composites(Fig.1).Inthesynthesissys⁃
tem,PluronicF127isusedasthestructure-directingagent(soft-template),preformedphenolicresinsisused
ascarbonresource,peroxomolybdenumsolutionisusedasprecursor,andethanol/H
2
Oisusedasco-solvent,
-madesampleandproductOMC-US-MoO
3
compositescanbeobtainedafterheat-treatment
at100and600℃,scontentofMoO
3
intheOMC-US-MoO
3
compositescanbewell
tunedthroughadjustingtheamountofperoxomolybdenumprecursorinthesynthesissystem.
Fig.1IllustrationoftheconstructionofOMC⁃US⁃
MoO
3
compositesviatheinsituconfinement
growthstrategy
Fig.2TGAcurvesoftheOMC⁃US⁃MoO
3
composites
withdifferentMoO
3
contentsobtainedafter
pyrolysisat600℃,respectively
MassfractionofMoO
3
(%):a.4;b.7;c.10;d.16;e.27.
TGAcurves(Fig.2)showthatthemassfractionsofMoO
3
speciesintheOMC-US-MoO
3
compositesare
1592
高等学校化学学报
Vol.42
4%,7%,10%,16%and27%(Table1),respectively,whenadjustingtheamountofmolybdenumprecursors
slossbelow100℃iscausedbythevolatilizationofadsorbedwaterinthe
tmassincreasementcanbedetectedbetween100and300℃,demonstratingtheexistence
oftraceamountofMoO
2
andabundantMoO
3
sincreasementcanbeattributedtothe
tothemassfractionofMoO
3
speciesinthecomposites.
SampleNo.
1
2
3
4
5
MoO
3
content(%,massfraction)
4
7
10
16
27
oxidationofthetraceamountMoO
2
.Subsequently,thehugemasslossabove300℃canbeobservedattribu-
slossbetween100and600℃isapproximate
Table1StructuralandtexturalparametersforOMC-US-MoO
3
withdifferentcontent
S
BET
(/m
2
·g
-1
)
796
693
652
574
428
V(/cm
3
·g
-1
)
0.62
0.54
0.49
0.41
0.27
D/nm
4.7
5.7
5.5
5.4
4.6
diffractionpeaksat0.391and0.782nm
−1
,and0.412and0.824nm
‒1
,respectively,indexingtothe(100)
and(200)eincreasementofMoO
3
content,theqvaluesofthe(100)diffractionpeaksshiftto0.532,0.617,and0.678nm
−1
,forsamples
tersoffivecompositesarecalculatedtobeabout18.5,17.6,13.6,11.7,and10.7nmwiththeincreased
MoO
3
content,atterns[Fig.3(B)]offivecompositesallshownodiffractionpeaksof
ultrasmallsizeevenatahighMoO
3
contenteffectively.
demonstratesthattheorderedmesoporouscarbonframeworkscanconfinethesizeofMoO
3
nanocrystalstoan
OMC-US-MoO
3
-10,OMC-US-MoO
3
-16,andOMC-US-MoO
3
-27,respondingcellparame⁃
MoO
3
phase,suggestingtheultrasmallparticlesizeofMoO
3
sult
TheSAXSpatterns[Fig.3(A)]ofOMC-US-MoO
3
-4andOMC-US-MoO
3
-7compositesshowtwoscattering
Fig.3SAXS(A)andWA⁃XRD(B)patternsoftheOMC⁃US⁃MoO
3
compositeswithdifferent
MoO
3
contentsobtainedafterpyrolysisat600℃
MassfractionofMoO
3
(%):a.4;b.7;c.10;d.16;e.27.
600℃inN
2
alldisplayrepresentativetype-ⅣcurveswithH2hysteresisloops[Fig.4(A)],inagreementwith
thepreviouslyreportedorderedmesoporousmaterials
[30~32]
.Sharpcapillarycondensationstepsintherelative
nauer-Emmett-Teller(BET)surfaceareaandporevolumeoffivecompositesarecalculatedand
pressure(p/p
0
)of0.41―0.70areobservedforfivecomposites,demonstratingthenarrowporesizedistribu⁃
faceareaandporevolumedecreasewiththeincreasedMoO
3
content,whichcanbe
rageporesizesoffivecompositesare
alsocalculatedandlistedonTable1fromtheirporesizedistributioncurve[Fig.4(B)]derivedfromthe
rageporesizesare4.7,5.7,5.5,5.4,and4.6nm,
Nitrogenadsorption-desorptionisothermsoffiveOMC-US-MoO
3
compositesobtainedaftercalcinedat
No.5
王常耀等:原位限域生长策略制备有序介孔碳负载的超小MoO
3
纳米颗粒
1593
Fig.4N
2
adsorption⁃desorptionisotherms(A)andporesizedistributions(B)oftheOMC⁃US⁃MoO
3
compositeswithdifferentMoO
3
contentsobtainedafterpyrolysisat600℃
MassfractionofMoO
3
(%):a.4;b.7;c.10;d.16;e.27.
ingtothecellparametersresults,theporewallsoffivecompositesarecalculatedtobe
14.1,11.9,8.1,6.3,and6.1nm,respectively.
y,theregular[100]and[110]directionscanbeclearobservedfromtheSEMimages
SEMimages(Fig.5)showthatOMC-US-MoO
3
-4andOMC-US-MoO
3
-7compositesownthemostregular
ofOMC-US-MoO
3
-7composites[Fig.5(B)and(F)].Inaddition,themesoporesareopenedandnoobvious
alongthe[100]and[110]directionsmanifestawell-defined2Dhexagonalmesostructuresinagreementwith
rtherincreasementofMoO
3
content,thereg⁃
gesofOMC-US-MoO
3
-7composites[Fig.6(A)—(C)]taken
theresultoftheSAXSpattern[Fig.2(A)].Thelatticespacingismeasuredtobe0.35nmfromtheHRTEM
image[Fig.6(D)],attributingtothe(040)crystallineplanesofα-MoO
3
[33]
.TheaveragesizeofMoO
3
nano⁃
US-MoO
3
-7compositesshowsthepresenceofonlyMo,OandCelements[Fig.7(A)].Thehigh-resolution
stratingtheco-existenceofMo
4+
andMo
6+
species
[34~36]
.TheratioofMo
4+
/Mo
6+
iscalculatedtobeabout13%.
OnlyafewMo
4+
signalscanbedetectedfromthespectrum,inagreementwiththeTGAresults.
Mo
3d
corelevelXPSspectra[Fig.7(B)]showfourpeaksat230.5,232.7,233.6,and235.9eV,demon⁃
crystalsisestimatedtobe(4.1±1.0)veyspectrumoftheOMC-
Fig.5SEMimagesofOMC⁃US⁃MoO
3
compositeswithdifferentMoO
3
contentsobtainedafter
pyrolysisat600℃
MassfractionofMoO
3
(%):(A)4;(B)7;(C)10;(D)16;(E)27.
1594
高等学校化学学报
Vol.42
Fig.6
Viewedalongthehexagonal(A)andcolumnar(B,C)directionsandHRTEMimage(D)ofarepresentativeMoO
3
nanoparticle.
TEMimagesofOMC⁃US⁃MoO
3
⁃7compositesobtainedafterpyrolysisat600℃
Fig.7SurveyXPSspectrum(A)andhigh⁃resolutionXPSspectraofMo
3d
(B)forOMC⁃US⁃MoO
3
⁃7
compositesobtainedafterpyrolysisat600℃
2.2
impactontheformationoffinalOMC-US-MoO
3
ainedMoO
3
nanocrystalsshowultrasmall
retainedeventhemassfractionofMoO
3
isincreasedto27%.However,theregularmesostructurescanbe
talscanbedetectedfromsamplesobtainedafterpyrolysisat600℃,theunregularmesostructurescanbe
attributedtotheuncontrollableoriginco-assemblyprocess.
2.3SelectiveOxidationofCyclooctene
Theselectiveoxidationreactionofcyclooctenewithhighcatalyticperformanceandstabilityisstillhighly
Basedontheaboveresults,weproposethattheinsituconfinementgrowthstrategyshowsignificant
FormationMechanismStudies
particlesize(<5nm)ructurecanbe
partialdestroyedwiththeincreasedMoO
3
ingtotheresultsthatnolargeMoO
3
nanocrys⁃
r,thestabilityofactivenanoparticlesincatalyticreactionisamajorchallenge,especiallyfor
case,theOMC-US-MoO
3
-7compositesshowmostregular
werecarriedoutusing1,2-dichloroethaneassolventinflaskwithchlorobenzeneasinternalstandardat80℃.
mesostructures,largestporesizes,appropriateholewallsize,MoO
3
,theobtained
OMC-US-MoO
3
-7comctions
TheOMC-US-MoO
3
-7compositescatalystshowsahighTOFvalueof2163h
‒1
whichiscalculatedonthebasis
(>99%)to1,isonwiththereportedheterogeneous
ile,ahighconversion(100%)ofcyclooctene,andselectivity
sentOMC-US-MoO
3
-7catalystshows
No.5
王常耀等:原位限域生长策略制备有序介孔碳负载的超小MoO
3
纳米颗粒
1595
ahigherTOFvaluethanMoO
3
/C
[8]
,MoO
3
/SiO
2
[37]
,Mo-MOFs
[9]
,Mo-MCM-41
[38]
,Mo-SBA-15
[38]
,[Pipera⁃
[39]
zinCH
2
{MoO()}],andMNP
30
-Si-inic-Mo
[40]
ldbenotedthatcyclooc⁃
2
Salen
n
tenestillgaveabout18%conversion[Fig.8(A)]intheabsenceofcatalystowingtothepresenceofstrong
42]
TBHPoxidants,whichisconsistentwithpreviousreports
[41,
.Further,twoothersubstrates,cyclohexene
andstyrenewerealsotestedunderthesameconditionstotesttheversatilityofOMC-US-MoO
3
-7asanepoxida⁃
singly,theconversionofcyclohexeneto1,2-epoxyclohexanecanreach54%
portingInformationofthispaper).
Table2
OMC
-
US
-
MoO
3
-
7
MoO
3
/C
MoO
3
/SiO
2
Mo
-
MOFs
Mo
-
MCM
-
41
[PiperazinCH
2
{MoO()}]
2
Salen
n
MNP
30
-
Si
-
inic
-
Mo
*
Mo
-
SBA
-
15
Catalyst
addition,theconversionofstyrenetostyreneoxidecanreach95%in36h,respectively(Fig.S1,seetheSup⁃
CalculatingTOFvalueforepoxidationofcycloocteneandcomparingwithothercatalysts
*
Time/h
2
2
6
7
3
12
24
3
Conv.(%)
52
80
90
93
97
99
95
46
Epoxidesel.(%)
>99
100
100
99
95
93
100
98
TOF/h
-1
2163
[8]
53
[9]
270
[36]
22
[36]
40
[37]
16
[38]
2
[35]
72
halfconversionofthereaction.
.TOFvalues(molofreactedcyclooctenepermolofcatalystandhour)werecalculatedatabout
Fig.8Timecourseplotsofcycloocteneepoxidation(A)andreusability(B)byusingOMC⁃US⁃MoO
3
⁃7com⁃
positesascatalyst
Reactionconditions:40.0mmolofcyclooctene,40.0mmolof5.5mol/LTBHPindecane,10mgofOMC-US-MoO
3
-7
catalyst(0.0048mmol/LofMoO
3
),6.0gof1,2-dichloroethaneassolvent,and15.0mmolofchlorobenzeneasinternal
ctiontemperatureis80℃.
tant,,thehotfiltrationtestwasusedtoassessthepresenceof
BesidetheefficientconversionofcatalystandhighTOFvalues,thestabilityofcatalystisalsoveryimpor⁃
ereactionlastedfor2h,weremovedthecatalystbyhotfiltrationand
ultsshowedthattherewasonlyaslightincreaseincon⁃
version[Fig.8(A)],recyclingstudy,cycloocteneepoxida⁃
tionwasperformedmaine
catesthatultrasmallMoO
3
nanoparticlessupportedonorderedmesoporouscarbonishighlystableandcanbe
reused,demonstratesitspotentialforindustrialapplications.
clearlyfoundthatobviouschangesareundetectedforcatalyticperformanceafterfiveruns[Fig.8(B)].Itindi⁃
Thehighconversion,selectively,andtheTOFvalueforthecycloocteneepoxidationreactioncanbe
attributedtotheuniquestructureoftheOMC-US-MoO
3
-hsurfacearea,volume,and
1596
高等学校化学学报
Vol.42
uniformmesoporescannotonlyenrichmentthereactionsubstratebutalsoinfavortothediffusionofsub⁃
rasmallMoO
3
nanocrystalssizeanditsexcellentdispersityintheframeworkscanexposemore
lyandconversion.
sefeaturesarebeneficialtotherapidconversionofsubstratemolecularwithhighselective⁃
3Conclusions
rouscarbonsupportultrasmallmolybdenananoparticles(OMC-US-MoO
3
)dmesoporous
tion,aseriousofOMC-US-MoO
3
compositecanbeobtainedwithcontrollablespecificsurface
uniformporesize(4.6―5.7nm).ThemesostructurescanberetainedeventheMoO
3
contentashighas27%.
Insummary,aninsituconfinementgrowthstrategywasdevelopedtotheconstructionoforderedmesopo⁃
carbonwasusedasaneffectivematrixtoinsituconfinethegrowthofMoO
3
ainedMoO
3
nanocrystalsshowultrasmallparticlesize(<5nm)andexcellentdispersityonthemesoporouscarbonframe⁃
areas(428―796m
2
/g),porevolumes(0.27―0.62cm
3
/g),MoO
3
contents(4%―27%,massfraction)and
Asatypicalexample,theobtainedsamplewith7%MoO
3
(denotedasOMC-US-MoO
3
-7)showslargestpore
tenewithahighstability.
size,ingusedasacatalyst,the
OMC-US-MoO
3
-7exhibitsanexcellentcatalyticactivity(2163h
−1
forTOF)forselectiveoxidationofcyclooc⁃
SupportingInformation:/CN/10.7503/cjcu20200303.
nalKeyResearchandDevelopmentProgramofChina(Nos.2016YFA0204000,2018YFE0201701)andChina
PostdoctoralScienceFoundation(No.2019M651342).
References
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
XiZ.,ZhouN.,SunY.,LiK.,Science,2001,292(5519),1139—1141
KamataK.,YoneharaK.,SumidaY.,YamaguchiK.,HikichiS.,MizunoN.,Science,2003,300(5621),964—966
LiuB.,WangP.,LopesA.,JinL.,ZhongW.,PeiY.,SuibS.L.,HeJ.,ACSCatal.,2017,7(5),3483—3488
BujakP.,BartczakP.,PolanskiJ.,.,2012,295,15—21
DouJ.,ZengH.C.,.C,2012,116(14),7767—7775
XiaoL.P.,WangS.,LiH.,LiZ.,ShiZ.J.,XiaoL.,SunR.C.,FangY.,SongG.,ACSCatal.,2017,7(11),7535—7542
ShettyM.,MurugappanK.,GreenW.H.,Román⁃LeshkovY.,.,2017,5(6),5293—5301
DokeD.S.,UmbarkarS.B.,GawandeM.B.,ZborilR.,BiradarA.V.,.,2016,5(1),904—910
NohH.,CuiY.,PetersA.W.,PahlsD.R.,OrtuñoM.A.,VermeulenN.A.,CramerC.J.,GagliardiL.,HuppJ.T.,FarhaO.K.,
.,2016,138(44),14720—14726
LuoZ.,MiaoR.,HuanT.D.,MosaI.M.,PoyrazA.S.,ZhongW.,CloudJ.E.,KrizD.A.,ThanneeruS.,HeJ.,Mater.,
2016,6(16),1600528
BrezesinskiT.,WangJ.,TolbertS.H.,DunnB.,.,2010,9(2),146—151
ChenL.,JiangH.,JiangH.,ZhangH.,GuoS.,HuY.,LiC.,Mater.,2017,7(15),1602782
HosonoK.,MatsubaraI.,MurayamaN.,WoosuckS.,IzuN.,.,2005,17(2),349—354
WangL.,GaoP.,ZhangG.,ChenG.,ChenY.,WangY.,BaoD.,.,2012,2012(35),5831—5836
FernandesC.I.,CapelliS.C.,VazP.D.,Nunes,C.D.,.A:Gen.,2015,504,344—350
ThispaperissupportedbytheNationalNaturalScienceFoundationofChina(No.21975050),theNatio⁃
[16]daPalmaCarreiroE.,BurkeA.J.,.A:Chem.,2006,249(1),123—128
[17]ChenW.,PeiJ.,HeC.T.,WanJ.,RenH.,ZhuY.,WangY.,DongJ.,TianS.,CheongW.C.,.,2017,56
(50),16086—16090
[18]SolarJ.,DerbyshireF.,DeBeerV.,RadovicL.R.,.,1991,129(2),330—342
[19]LeeS.H.,KimY.H.,DeshpandeR.,ParillaP.A.,WhitneyE.,GillaspieD.T.,JonesK.M.,MahanA.H.,ZhangS.,DillonA.C.,
.,2008,20(19),3627—3632
[20]TavasoliA.,KarimiS.,ShojaM.,.,2013,4(1),21
No.5
王常耀等:原位限域生长策略制备有序介孔碳负载的超小MoO
3
纳米颗粒
1597
[21]WangC.,ZhaoY.,ZhouL.,LiuY.,ZhangW.,ZhaoZ.,HozzeinW.N.,AlharbiH.M.S.,LiW.,ZhaoD.,.A,2018,
6(43),21550—21557
[22]WangC.,WanX.,DuanL.,ZengP.,LiuL.,GuoD.,XiaY.,ElzatahryA.A.,LiW.,ZhaoD.,.,2019,58
(44),15863—15868
[23]ZhangP.,ZhangJ.,DaiS.,.J.,2017,23(9),1986—1998
[24]ReyesP.,BordaG.,GneccoJ.,RivasB.L.,.,2004,93(4),1602—1608
[25]QinM.,LiuM.,ZhangQ.,LiC.,LiangS.,.,2013,128(1),642—646
[26]ZhangF.,HuH.,ZhongH.,YanN.,ChenQ.,DaltonTrans.,2014,43(16),6041—6049
[27]MengY.,GuD.,ZhangF.,ShiY.,YangH.,LiZ.,YuC.,TuB.,ZhaoD.,.,2005,44(43),7053—7059
[28]WangS.,ZhaoQ.,WeiH.,WangJ.Q.,ChoM.,ChoH.S.,TerasakiO.,WanY.,.,2013,135(32),11849—11860
[29]ChenJ.,BurgerC.,KrishnanC.V.,ChuB.,.,2005,127(41),14140—14141
[30]LiuR.,ShiY.,WanY.,MengY.,ZhangF.,GuD.,ChenZ.,TuB.,ZhaoD.,.,2006,128(35),11652—11662
[31]DongW.,SunY.,LeeC.W.,HuaW.,LuX.,ShiY.,ZhangS.,ChenJ.,ZhaoD.,.,2007,129(45),13894—
13904
[32]LiuR.,RenY.,ShiY.,ZhangF.,ZhangL.,TuB.,ZhaoD.,.,2008,20(3),1140—1146
[33]PatnaikS.,SwainG.,ParidaK.,Nanoscale,2018,10(13),5950—5964
[34]QinP.,FangG.,ChengF.,KeW.,LeiH.,WangH.,ZhaoX.,aces,2014,6(4),2963—2973
[35]JiW.,ShenR.,YangR.,YuG.,GuoX.,PengL.,DingW.,.A,2014,2(3),699—704
[36]QinP.,FangG.,KeW.,ChengF.,ZhengQ.,WanJ.,LeiH.,ZhaoX.,.A,2014,2(8),2742—2756
[37]ChandraP.,DokeD.S.,UmbarkarS.B.,BiradarA.V.,.A,2014,2(44),19060—19066
[38]BakalaP.C.,BriotE.,SallesL.,BrégeaultJ.M.,.A
:
Gen.,2006,300(2),91—99
[39]BagherzadehM.,ZareM.,.,2013,66(16),2885—2900
[40]FernandesC.I.,CarvalhoM.D.,FerreiraL.P.,NunesC.D.,VazP.D.,.,2014,760,2—10
[41]MuylaertI.,MusschootJ.,LeusK.,DendoovenJ.,DetavernierC.,VanDerVoortP.,.,2012,2012(2),251—260
[42]El⁃KorsoS.,BedraneS.,Choukchou⁃BrahamA.,BachirR.,RSCAdv.,2015,5(78),63382—63392
(Ed.:V,K)
锂金属负极亲锂骨架的研究进展
RecentProgressofLithiophilicHostforLithiumMetalAnode
詹迎新,石鹏,张学强,魏俊宇,张乾魁,黄佳琦
ZHANYingxin,SHIPeng,ZHANGXueqiang,
WEIJunyu,ZHANGQiankui,HUANGJiaqi
∗
eUniversities,
2021,42(5),1569—1580
研究论文(Article)
超薄骨架有序介孔CdS/NiS的制备及光催化产氢性能
OrderedMesoporousNiS-loadedCdSwithUltrathin
FrameworksforEfficientPhotocatalyticH
2
Production
杨晓梅,吴强,郭茹,叶凯波,薛屏,王晓中,赖小勇
YANGXiaomei,WUQiang,GUORu,YEKaibo,
XUEPing
∗
,WANGXiaozhong,LAIXiaoyong
∗
eUniversities,
2021,42(5),1581—1588
原位限域生长策略制备有序介孔碳负载的超小MoO
3
纳米
颗粒
Insitu
ConfinementGrowthStrategyforOrderedMesoporous
CarbonSupportUltrasmallMoO3Nanoparticles
王常耀,王帅,段林林,朱晓航,张兴淼,李伟
WANGChangyao,WANGShuai,DUANLinlin,
ZHUXiaohang,ZHANGXingmiao,LIWei
∗
eUniversities,
2021,42(5),1589—1597
全固态锂金属电池多物理场耦合下的电化学过程仿真模拟
SimulationoftheElectrochemistryProcesswiththeCouplingof
MultiplePhysicalFieldsforAll-solid-stateLithiumBatteries
孙哲韬,何英杰,陈邵杰,聂璐,黄缘齐,刘巍
SUNZhetao,HEYingjie,CHENShaojie,NIELu,
HUANGYuanqi,LIUWei
∗
eUniversities,
2021,42(5),1598—1609
Ⅴ
发布者:admin,转转请注明出处:http://www.yc00.com/web/1710436993a1756589.html
评论列表(0条)