2024年1月12日发(作者:)
keras实现external attention代码
External attention,也被称为 pointer-generator network,是一个常用于序列生成任务的注意力机制。这个机制可以同时学习从输入序列中获取信息和选择信息的能力。
下面是一个简单的 Keras 实现示例:
python复制代码
from import Model
from import Input, Embedding, LSTM, Dense, Lambda
import d as K
def scaled_dot_product_attention(q, k, v, mask=None):
"""Calculate the attention weights.
q, k, v must have matching leading dimensions.
k, v must have matching penultimate dimension, i.e.: seq_len_k =
seq_len_v.
The mask has different shapes depending on its type(padding or look
ahead)
but it must be broadcastable for addition.
Args:
q: query shape == (..., seq_len_q, depth)
k: key shape == (..., seq_len_k, depth)
v: value shape == (..., seq_len_v, depth_v)
mask: Float tensor with shape broadcastable
to (..., seq_len_q, seq_len_k). Defaults to None.
Returns:
output, attention_weights
"""
matmul_qk = _dot(q, k, axes=2) # (..., seq_len_q, seq_len_k)
# scale matmul_qk
dk = ((k)[2], ())
scaled_attention_logits = matmul_qk / (dk)
# add the mask to the scaled tensor.
if mask is not None:
scaled_attention_logits += (mask * -1e9) # broadcast addition
# softmax is normalized on the last axis (seq_len_k)
attention_weights = x(scaled_attention_logits, axis=-1) #
(..., seq_len_q, seq_len_k)
output = _dot(attention_weights, v) # (..., seq_len_q,
depth_v)
return output, attention_weights
def attention_layer(units):
def layer(inputs):
query, key, value = inputs
output, attention_weights = scaled_dot_product_attention(query,
key, value)
return output, attention_weights
return layer
这个代码定义了一个注意力层,该层使用 scaled dot-product attention 机制。这个机制首先计算 query 和 key 的点积,然后对结果进行缩放并应用 softmax 函数,最后用得到的权重和 value 进行加权求和。这里的 query、key 和 value 都来自输入的张量。然后返回输出张量和注意力权重。你可以在模型中使用这个自定义的注意力层。
发布者:admin,转转请注明出处:http://www.yc00.com/web/1705061558a1389880.html
评论列表(0条)