2024年4月21日发(作者:魔声钻石之泪耳机)
TowardsInternet-scaleMulti-viewStereo
YasutakaFurukawa
1
1
GoogleInc.
Abstract
Thispaperintroducesanapproachforenablingexist-
ingmulti-viewstereomethodstooperateonextremelylarge
nideaistodecom-
posethecollectionintoasetofoverlappingsetsofphotos
thatcanbeprocessedinparallel,andtomergetheresult-
erlappingclusteringproblem
isformulatedasaconstrainedoptimizationandsolvedit-
gingalgorithm,designedtobeparallel
andout-of-core,incorporatesrobustfilteringstepstoelim-
inatelow-qualityreconstructionsandenforceglobalvisi-
roachhasbeentestedonseveral
,includingone
withovertenthousandimages,yieldinga3Dreconstruc-
tionwithnearlythirtymillionpoints.
BrianCurless
2
1,2
RichardSzeliski
3
2
UniversityofWashington
3
MicrosoftResearch
sereconstructionofPiazzaSanMarco(Venice)
from13,703imageswith27,707,825reconstructedMVSpoints
(furtherupsampledx9forhighqualitypoint-basedrendering).
uction
Thestateoftheartin3Dreconstructionfromimageshas
dwith
theexplosionofimageryavailableonlineandadvancesin
computing,wehavetheopportunitytorunreconstruction
,wecannowattemptto
,everybuilding,landscape,
and(static)objectthatcanbephotographed.
Themostimportanttechnologicalingredientstowards
,
SIFT[17])provideaccuratecorrespondences,structure-
from-motion(SFM)algorithmsusethesecorrespondences
toestimateprecisecamerapose,andmulti-view-stereo
(MVS)methodstakeimageswithposeasinputandproduce
dense3Dmodelswithaccuracynearlyonparwithlaser
scanners[22].Indeed,thistypeofpipelinehasalreadybeen
demonstratedbyafewresearchgroups[11,12,14,19],
withimpressiveresults.
Toreconstructeverything,onekeychallengeisscala-
bility.
1
Inparticular,howcanwedevisereconstructional-
,onthemillions
?
areotherchallengessuchashandlingcomplexBRDFsand
lightingvariations,whichwedonotaddressinthispaper.
1
There
GivenrecentprogressonInternet-scalematchingandSFM
(notablyAgarwaletal.’sRome-in-a-dayproject[1]),wefo-
cusoureffortsinthispaperonthelaststageofthepipeline,
i.e.,Internet-scaleMVS.
MVSalgorithmsarebasedontheideaofcorrelating
measurementsfromseveralimagesatoncetoderive3D
Salgorithmsaimatrecon-
structingaglobal3Dmodelbyusingalltheimagesavail-
ablesimultaneously[9,13,20,24].Suchanapproachisnot
d,itbecomes
importanttoselecttherightsubsetofimages,andtocluster
themintomanageablepieces.
Weproposeanovelviewselectionandclusteringscheme
thatallowsawideclassofMVSalgorithmstoscaleupto
edwithanewmergingmethod
thatrobustlyfiltersoutlow-qualityorerroneouspoints,we
demonstrateourapproachrunningforthousandsofimages
temisthefirstto
demonstrateanunstructuredMVSapproachatcity-scale.
Weproposeanoverlappingviewclusteringproblem[2],
inwhichthegoalistodecomposethesetofinputimages
pisimportant
fortheMVSproblem,asastrictpartitionwouldundersam-
ustered,we
applyastate-of-the-artMVSalgorithmtoreconstructdense
3Dpoints,andthenmergetheresultingreconstructionsinto
1
filteringalgo-
rithmsareintroducedtohandlereconstructionerrorsand
thevastvariationsinreconstructionqualitythatoccurbe-
tweendistantandnearbyviewsofobjectsinInternetphoto
filtersaredesignedtobeout-of-coreand
parallel,inordertoprocessalargenumberofMVSpoints
effivisualizationsofmodelscontaining
tensofmillionsofpoints(seeFigure1).
dWork
ScalabilityhasrarelybeenaconsiderationinpriorMVS
algorithms,aspriordatasetshavebeeneitherrelatively
small[22],avideosequence
whichcanbedecomposedintoshorttimeintervals[19]).
Nevertheless,somealgorithmslendthemselvesnaturally
icular,severalalgorithmsoperate
bysolvingforadepthmapforeachimage,usingalocal
neighborhoodofnearbyimages,andthenmergetheresult-
ingreconstructions[11,12,18,19].Eachdepthmapcan
r,the
depthmapstendtobenoisyandhighlyredundant,leading
ore,thesealgorithms
typicallyrequireadditionalpost-processingstepstoclean
upandmergethedepthmaps.
ManyofthebestperformingMVSalgorithmsinstead
reconstructaglobal3Dmodeldirectlyfromtheinputim-
ages[9,13,20,24].Globalmethodscanavoidredun-
dantcomputationsandoftendonotrequireaclean-uppost-
process,eptionisJancoseketal.
[14]whoachievescalabilitybydesigningthealgorithmout-
r,rast,
weseekanout-of-corealgorithmthatisalsoparallelizable.
Withdepth-mapbasedMVSalgorithms,severalauthors
havesucceededinlarge-scaleMVSreconstructions[18,
19].Pollefeysetal.[19]presentareal-timeMVSsys-
timateadepthmap
foreachinputimage,reducenoisebyfusingnearbydepth
maps,andmergetheresultingdepthmapsintoasingle
ketal.[18]proposeapiece-wise
planardepthmapcomputationalgorithmwithverysimilar
r,bothmethodshave
beentestedonlyonhighlystructured,street-viewdatasets
obtainedbyavideocameramountedonamovingvan,and
nottheunstructuredphotocollectionsthatweconsiderin
thispaper,whichposeadditionalchallenges.
Besidesscalability,variationinreconstructionqualityis
anotherchallengeinhandlinglargeunorganizedimagecol-
lections,assurfacesmaybeimagedfrombothcloseupand
eetal.[12]proposedthefirstMVSmethod
appliedtoInternetphotocollections,whichhandlesvaria-
tioninimagesamplingresolutionsbyselectingimageswith
etal.[10]select
imagesatdifferentbaselinesandimageresolutionstocon-
SFM point
P
1
SFM points
P
3
P
4
image
images
P
2
cluster
{P
1
,P
2
, ...}
P
Images
5
{I
1
,I
2
, ...}
C
I
I
4
1
I
2
I
Image clusters
1
3
C
2
{C
1
,C
2
, ...}
wclusteringalgorithmtakesimages{I
visibility
}
information
.
{V
i
},SFM
points{P
j
},andtheirassociated
j
},then
producesoverlappingimageclusters{C
k
thesemethodshandlevariation
ech-
niquesmaybeusedinconjunctionwiththemethodspro-
posedhere,butthemajordifferenceinourworkisthatwe
alsohandlethevariationinapost-processingstep,when
thatsomepriordepth
mapmergingalgorithmstakeintoaccountestimatesofun-
,bytakingweightedcombinationsofdepth
samplestorecoveramesh[4,25].Whilesuchapproaches
canhandlenoisevariation,wefindtheydonotperformwell
forlargeInternetphotocollections,whereresolutionvaria-
tionisamajorfactor,becausecombininghighandlowreso-
lutiongeometriesinthestandardwayswilltendtoattenuate
eadproposeasimplemerg-
ingstrategythatfiltersoutlowresolutiongeometry,which
wehavefoundtoberobustandwell-tailoredtorecovering
apoint-basedmodelasoutput.
w-
clusteringalgorithmisexplainedinSection2,anddetails
oftheMVSpointmergingandrenderingaregiveninSec-
mentalresultsareprovidedinSection4and
lementationof
theproposedview-clusteringalgorithmisavailableat[6].
ustering
Weassumethatourinputimages{I
algorithmtoyieldcamera
i
}havebeenpro-
cessedbyanSFMposesanda
sparsesetof3Dpoints{P
j
},eachofwhichisvisibleina
setofimagesdenotedbyV
j
.WetreattheseSFMpointsas
sparsesamplesofthedensereconstructionthatMVSwill
,theycanbeusedasabasisforviewclus-
ecifically,thegoalofviewclusteringisto
find(anunknownnumberof)overlappingimageclusters
{C
k
}suchthateachclusterisofmanageablesize,andeach
SFMpointcanbeaccuratelyreconstructedbyatleastone
oftheclusters(seeFigure2).
mFormulation
Theclusteringformulationisdesignedtosatisfythefol-
lowingthreeconstraints:(1)redundantimagesareexcluded
fromtheclusters(compactness),(2)eachclusterissmall
enoughforanMVSreconstruction(sizeconstraint);and
发布者:admin,转转请注明出处:http://www.yc00.com/num/1713708078a2302656.html
评论列表(0条)