第四章参数的最小二乘法估计讲解

第四章参数的最小二乘法估计讲解


2024年4月10日发(作者:play store download)

第四章 最小二乘法与组合测量

§

1

概述

最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。 对于从 事精密

科学实验的人们来说, 应用最小乘法来解决一些实际问题, 仍是目前必不 可少的手段。

例如,取重复测量数据的算术平均值作为测量的结果, 就是依据了 使残差的平方和为最小

的原则, 又如,在本章将要用最小二乘法来解决一类组合 测量的问题。 另外,常遇到用

实验方法来拟合经验公式, 这是后面一章回归分析 方法的内容,它也是以最小二乘法原理

为基础。

最小二乘法的发展已经经历了

200

多年的历史,它最先起源于天文和大地测 量的需

要, 其后在许多科学领域里获得了广泛应用, 特别是近代矩阵理论与电子 计算机相结

合,使最小二乘法不断地发展而久盛不衰。

本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用, 一些深 入的内

容可参阅专门的书籍和文献。

§

2

最小二乘法原理

最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。 对某 量

x

量一组数据

x

1

,x

2

, ,x

n

,假设数据中不存在系统误差和粗大误差,相互独

立,服从正态分布,它们的标准偏差依次为:

1

,

2

,

n

记最可信赖值为 x ,相

应的残差

v

i

x

i

x

。测值落入

(x

i

,x

i

dx)

的概率。

2

P

i

i

i 2

exp(

2

v

i

2

)dx

根据概率乘法定理,测量

x

1

,x

2

, ,x

n

同时出现的概率为

P

i

P

i

1 1 v

i2n

n

n

exp[

( ) ](dx)

i

( 2 ) 2

i i

11

显然,最可信赖值应使出现的概率

P

为最大,即使上式中页指数中的因子达

最小,即

2

v

i

i

2

Min

i i

2

o

2

即权因子

w

i

1

2

i i

2

权因子:

w

i

[ wvv] w

2

i

v

i

Min

x

w

n

i

x

i

i1

x

n

即加权算术平均值

w

i

i1

i

表示权因子。

[vv] v

i

2

Min

以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的,

为从一组测量数据中求得最佳结果,还可使用其它原理 例如

(1) 最小绝对残差和法:

v

i

Min

(2) 最小最大残差法:

max v

i

Min

(3) 最小广义权差法:

maxv

i

min v

i

Min

以上方法随着电子计算机的应用才逐渐引起注意,但最小二乘法便于解析,

再用微分法,得最可信赖值

这里为了与概率符号区别,以

特别是等权测量条件下,有:

称之为

最小二乘法原理。它是以最小二乘方而得名。


发布者:admin,转转请注明出处:http://www.yc00.com/num/1712752658a2116366.html

相关推荐

发表回复

评论列表(0条)

  • 暂无评论

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信