2024年4月5日发(作者:游戏手柄哪个牌子的好)
284IEEETRANSACTIONSONEVOLUTIONARYCOMPUTATION,VOL.13,NO.2,APRIL2009
MultiobjectiveOptimizationProblemsWith
ComplicatedParetoSets,MOEA/DandNSGA-II
HuiLiandQingfuZhang,SeniorMember,IEEE
Abstract—Partlyduetolackoftestproblems,theimpactof
theParetoset(PS)shapesontheperformanceofevolutionary
perin-
troducesageneralclassofcontinuousmultiobjectiveoptimization
testinstanceswitharbitraryprescribedPSshapes,whichcould
beusedforstudyingtheabilityofmultiobjectiveevolutionary
pro-
posesanewversionofMOEA/Dbasedondifferentialevolution
(DE),i.e.,MOEA/D-DE,andcomparestheproposedalgorithm
withNSGA-IIwiththesamereproductionoperatorsonthetest
erimentalresults
indicatethatMOEA/DcouldsignificantlyoutperformNSGA-II
eststhatdecompositionbasedmul-
tiobjectiveevolutionaryalgorithmsareverypromisingindealing
withcomplicatedPSshapes.
IndexTerms—Aggregation,decomposition,differentialevolu-
tion,evolutionaryalgorithms,multiobjectiveoptimization,Pareto
optimality,testproblems.
I.I
NTRODUCTION
A
multiobjectiveoptimizationproblem(MOP)canbestated
asfollows:
minimize
subjectto(1)
istheobjectivewhereisthedecision(variable)space,
consistsofreal-valuedobjectivespace,and
losedandconnectedregionin
objectivesarecontinuousof,wecallproblem(1)acontinuous
MOP.
,betwoLet
forall,vectors,issaidtodominateif
1
iscalled(globally)Paretooptimal
ifthereisno
,iscalledtheofalltheParetooptimalpoints,denotedby
ofalltheParetoobjectivevectors,
,iscalledtheParetofront[1].
ManuscriptreceivedOctober18,2007;revisedJanuary28,ub-
lishedSeptember26,2008;currentversionpublishedApril01,2009.
iththeDepartmentofComputingandElectronicSystems,Uni-
versityofEssex,ColchesterCO43SQ,wwiththeSchoolofCom-
puterScience,UniversityofNottingham,NottinghamNG81BB,U.K.(e-mail:
hzl@).
swiththeDepartmentofComputingandElectronicSystems,Uni-
versityofEssex,ColchesterCO43SQ,U.K.(e-mail:qzhang@).
DigitalObjectIdentifier10.1109/TEVC.2008.925798
1
Thisdefiinequalitiesshould
Undercertainsmoothnessassumptions,itcanbeinduced
fromtheKarush–Kuhn–TuckerconditionthatthePSofa
-di-
continuousMOPdefinesapiecewisecontinuous
mensionalmanifoldinthedecisionspace[1],[2].Therefore,
thePSofacontinuousbi-objectiveoptimizationproblemisa
whilethePSofacontin-
piecewisecontinuous1-Dcurvein
uousMOPwiththreeobjectivesisapiecewisecontinuous2-D
theso-calledregularitypropertyofcontinuous
MOPs.
Recentyearshavewitnessedsignificantprogressinthede-
velopmentofevolutionaryalgorithms(EAs)formultiobjective
optimizationproblems[3]–[16].Multiobjectiveevolutionary
algorithms(MOEAs)aimatfindingasetofrepresentative
gelytothe
natureofMOEAs,theirbehaviorsandperformancesaremainly
uousmultiobjectivetestprob-
lemsaremostwidelyusedforthispurposesincetheyareeasy
eenwell-understood(as
reviewedin[17])thatthegeometricalshapesofthePF,among
othercharacteristicsofanMOP,couldaffecttheperformanceof
,arangeofPFshapessuchasconvex,concave,
andmixedPFscanbefoundincommonlyusedcontinuous
testproblems[18]–[21],whichcanbeusedforstudyinghow
r,thePS
shapesofmostexistingtestproblemsareoftenstrikingly
mple,thePSsoftheZDTtestinstances[19]
withtwoobjectivesarepartofalinesegmentdefinedby
andthePSsoftheDTLZtestinstances[20]withthreeobjectives
aresubsetsof
Thereisnoreasonthatrealworldproblemshavesuchsimple
PSs.
2
ObservingtheseoversimplifiedPSsintheexistingtestin-
stances,Okabeetal.firstarguedthenecessityofconstructing
testinstanceswithcomplicatedPSsandprovidedamethodfor
controllingPSshapes[24].Theyhaveconstructedseveraltest
r,theirtestinstances
cently,
Hubandetal.[17]andDebetal.[25]emphasizedthatvariable
,parameterdependencies)shouldbeconsideredin
constructingtestinstancesandproposedusingvariabletrans-
lelinkages
r,thePSshapesinthe
exampleswithcomplicatedPSshapescanbefoundinavehicledy-
namicdesignproblemin[22]andapowerplantdesignoptimizationin[23].
2
Two
bereversedifthegoalistomaximizetheobjectivesin(1).“Dominate”means
“bebetterthan.”
1089-778X/$25.00©2008IEEE
Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on May 6, 2009 at 06:50 from IEEE Xplore. Restrictions apply.
LIANDZHANG:MULTIOBJECTIVEOPTIMIZATIONPROBLEMSWITHCOMPLICATEDPARETOSETS,MOEA/DANDNSGA-II285
testinstancesconstructedin[17]and[25]arenoteasytobedi-
er,variablelinkagesand
ly,PSshapes
arenotafocusin[17]and[25].Itispossiblethatacontinuous
MOPwithcomplicatedvariablelinkageshasaverysimplePS.
Partiallyduetolackoftestproblems,theinfluenceofPSshapes
overtheperformanceofMOEAshasattractedlittleattentionin
theevolutionarycomputationcommunity.
Inspiredbythestrategiesforconstructingtestproblems
in[24],[25],wehaverecentlyproposedseveralcontinuous
testinstanceswithvariablelinkages/complicatedPSs[26],in
estin-
stanceshavealsobeenmodifiedandusedin[27]forcomparing
erimental
resultsindicatethatcomplicatedPSshapescouldcausediffi-
r,thePSsofthesetestinstancesare
eitherlinearorquadratic,whicharenotcomplicatedenoughfor
hemajorpurposes
inthispaperistoproposeageneralclassofcontinuoustest
problemswitharbitraryprescribedPSshapesforfacilitating
thestudyoftheabilityofMOEAstodealwiththecomplication
ofPSs.
ThemajorityofexistingMOEAsarebasedonParetodomi-
nance[4]–[6],[8],[9],[11],[12].Inthesealgorithms,theutility
ofeachindividualsolutionismainlydeterminedbyitsPareto
dominancerelationswithothersolutionsvisitedintheprevious
singParetodominancealonecoulddiscourage
thediversityofsearch,sometechniquessuchasfitnesssharing
andcrowdinghaveoftenbeenusedascompensationinthese
MOEAs[5],[9],[11],[28].Arguably,NSGA-II[11]isoneof
r-
acteristicfeatureofNSGA-IIisitsfastnondominatedsorting
procedureforrankingsolutionsinitsselection.
AParetooptimalsolutiontoanMOPcouldbeanoptimalso-
lutionofasingleobjectiveoptimizationprobleminwhichthe
objectiveisanaggregationfunctionofalltheindividualobjec-
ore,approximationofthePFcanbedecomposed
intoanumberofsingleobjectiveoptimizationsubproblems.
Thisisabasicideabehindmanytraditionalmathematicalpro-
grammingmethodsforapproximatingthePF[1].Anumberof
MOEAsadoptthisideafortheirfitnessassignmenttosomeex-
tent[29]–[41].MOGLS[29],[32]optimizesanaggregationof
theobjectiveswithrandomlyselectedaggregationcoefficients
ateachstage,whichmakesitveryeasy,atleastinprinciple,to
usesingleobjectivelocalsearchforimprovingindividualsolu-
sesanumberofscalaraggregationfunctionsto
guideitssearchandhasdemonstrateditsadvantagefortackling
MOPswithmanyobjectives[33],[37],[39].Byusingaggrega-
tionsoftheobjectives,adecisionmaker’spreferencehasbeen
incorporatedintoMOEAsin[41].
MOEA/,ag-
gregations)[34].MOEA/Dsimultaneouslyoptimizesanumber
ectivein
eachoftheseproblemsisanaggregationofalltheobjectives.
Neighborhoodrelationsamongthesesubproblemsaredefined
basedonthedistancesbetweentheiraggregationcoefficient
,scalaraggregationfunction)is
optimizedinMOEA/Dbyusinginformationmainlyfromits
neighboringsubproblems.
WebelievethatcomparisonstudiesbetweenMOEAsbased
,ag-
gregation)ontestproblemswithvariouscharacteristicscould
beveryusefulforunderstandingstrengthsandweaknessesof
thesedifferentmethodologiesandthusidentifyingimportantis-
orcontri-
butionsofthispaperincludethefollowing.
•Ageneralclassofmultiobjectivecontinuoustestinstances
witharbitraryprescribedPSshapeshavebeenproposed.
•AnewimplementationofMOEA/DwithaDEoperator
andpolynomialmutationhasbeensuggested,inwhichtwo
extrameasureshavebeenintroducedformaintainingthe
populationdiversity.
•ExperimentshavebeenconductedtocompareMOEA/D
andNSGA-IIwiththesameDEandmutationoperatoron
thetestinstancesintroducedinthispaper.
nII
introducesaclassofcontinuousmultiobjectiveoptimizationtest
instanceswithcomplicatedPSshapesandprovidesatheorem
nIIIproposesMOEA/D-DE,anew
implementationofMOEA/DwithaDEoperatorandpolyno-
mialmutation,anddescribesNSGA-II-DE,animplementation
ments
nVconcludesthe
paper.
II.M
ULTIOBJECTIVE
T
EST
P
ROBLEM
W
ITH
P
RESCRIBED
P
ARETO
S
ET
Inourproposedgenericcontinuoustestproblem,thedecision
spaceis
(2)
where
forall
objectivestobeminimizedtakethefollowingform:
.
.
.
(3)
,and
aretwosubvectorsof;
•arefunctionsfromto;
arefunctionsfromto;•
•isafunctionfromto
ThefollowingtheoremisaboutthePSandPFofthegeneric
testproblem.
Theorem1:Supposethat
forallifandonlyif.[i]
[ii]ThePSofthefollowing-objectiveoptimization
problem:
minimize
subjectto
is.
(4)
where
•
.Its
Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on May 6, 2009 at 06:50 from IEEE Xplore. Restrictions apply.
发布者:admin,转转请注明出处:http://www.yc00.com/num/1712297231a2036812.html
评论列表(0条)