2024年5月1日发(作者:)
统计学习理论的本质:英中文术语对照表
来源:张学工译, VN Vapnik原著, 统计学习理论的本质, 清华大学
出版社, 2000
使用范围:南京师范大学计算机科学与技术学院研究生。
声明:任何人在其出版物使用或者上载到互连网都必须得到译者及出
版社的许可。
AdaBoost algorithm (AdaBoost(自举)算法)163
admissible structure (容许结构) 95
algorithmic complexity (算法复杂度) 10
annealed entropy (退火熵) 55
ANOVA decomposition (ANOVA分解) 199
a posteriori information (后验信息) 120
a priori information (先验信息) 120
approximately defined operator (近似定义的算子) 230
approximation rate (逼近速率) 98
artificial intelligence (人工智能) 13
axioms of probability theory (概率理论的公理) 60
back propagation method (后向传播方法) 126
basic problem of probability theory (概率论的基本问题) 62
basic problem of statistics (统计学的基本问题) 63
Bayesian approach (贝叶斯方法) 119
Bayesian inference (贝叶斯推理) 34
bound on the distance to the smallest risk (与最小风险的距离的界) 77
bound on the values of achieved risk (所得风险值的界) 77
bounds on generalization ability of a learning machine (学习机器推广能
力的界) 76
canonical separating hyperplanes (标准分类超平面) 132
capacity control problem (容量控制问题) 116
cause-effect relation (因果关系) 9
choosing the best sparse algebraic polynomial (选择最佳稀疏多项式)
117
choosing the degree of polynomial (选择多项式阶数) 116
classification error (分类错误) 19
codebook (码本) 106
complete (Popper's) nonfalsifiability (完全(波普)不可证伪性) 52
compression coefficient (压缩系数) 107
consistency of inference (推理的一致性) 36
220
constructive distribution-independent bound on the rate of convergence
(构造性的不依赖于分布的收敛速度界) 69
convolution of inner production (内积回旋) 140
criterion of nonfalsifiability (不可证伪性判据) 47
data smoothing problem (数据平滑问题) 209
decision-making problem (决策选择问题) 296
decision trees (决策树) 7
deductive inference (演绎推理) 47
density estimation problem (密度估计问题):
parametric(Fisher-Wald) setting(参数化(Fisher-Wald)表示) 20
nonparametric setting (非参数表示) 28
discrepancy (差异) 18
discriminant analysis (判别分析) 24
discriminant function (判别函数) 25
distribution-dependent bound on the rate of convergence (依赖于分布的
收敛速度界) 69
distribution-independent bound on the rate of convergence (不依赖于分
布的收敛速度界) 69
Δ
-margin separating hyperplane (
Δ
间隔分类超平面) 132
empirical distribution function (经验分布函数) 28
empirical processes (经验过程) 40
empirical risk functional (经验风险泛函) 20
empirical risk minimization inductive principle (经验风险最小化归纳原
则) 20
ensemble of support vector machines (支持向量机的组合) 163
entropy of the set of functions (函数集的熵) 42
entropy on the set of indicator functions (指示函数集的熵) 42
equivalence classes (等价类) 292
estimation of the values of a function at the given points (估计函数在给
定点上的值) 292
expert systems (专家系统) 7
ε
-insensitivity (
ε
不敏感性) 181
ε
-insensitive loss function (
ε
不敏感损失函数) 181
feature selection problem (特征选择问题) 118
function approximation (函数逼近) 98
function estimation model (函数估计模型) 17
Gaussian (高斯函数) 26
221
发布者:admin,转转请注明出处:http://www.yc00.com/news/1714509652a2460200.html
评论列表(0条)